Questions marquées «multiple-regression»

Régression comprenant au moins deux variables indépendantes non constantes.

3
Pourquoi la régression polynomiale est-elle considérée comme un cas particulier de régression linéaire multiple?
Si la régression polynomiale modélise les relations non linéaires, comment peut-elle être considérée comme un cas particulier de régression linéaire multiple? Wikipedia note que "Bien que la régression polynomiale adapte un modèle non linéaire aux données, elle est linéaire en tant que problème d’estimation statistique, en ce sens que la …


7
Choix de variables à inclure dans un modèle de régression linéaire multiple
Je travaille actuellement à la construction d'un modèle utilisant une régression linéaire multiple. Après avoir manipulé mon modèle, je ne sais pas comment déterminer au mieux les variables à conserver et celles à supprimer. Mon modèle a commencé avec 10 prédicteurs pour le DV. Lors de l'utilisation des 10 prédicteurs, …

3
Contraste de signification dans la régression linéaire: test t significatif pour un coefficient vs une statistique F globale non significative
Je fais correspondre un modèle de régression linéaire multiple entre 4 variables catégoriques (avec 4 niveaux chacune) et une sortie numérique. Mon jeu de données a 43 observations. La régression me donne les suivantes ppp -values du ttt -test pour chaque coefficient de pente: .15,.67,.27,.02.15,.67,.27,.02.15, .67, .27, .02 . Ainsi, …

5
Comment dériver l'estimateur des moindres carrés pour la régression linéaire multiple?
Dans le cas de régression linéaire simple , vous pouvez dériver l'estimateur des moindres carrés sorte que vous n'avez pas besoin de connaître pour estimery=β0+β1xy=β0+β1xy=\beta_0+\beta_1xβ^1=∑(xi−x¯)(yi−y¯)∑(xi−x¯)2β^1=∑(xi−x¯)(yi−y¯)∑(xi−x¯)2\hat\beta_1=\frac{\sum(x_i-\bar x)(y_i-\bar y)}{\sum(x_i-\bar x)^2}β^0β^0\hat\beta_0β^1β^1\hat\beta_1 Supposons que j'ai , comment puis-je dériver sans estimer ? ou n'est-ce pas possible?y=β1x1+β2x2y=β1x1+β2x2y=\beta_1x_1+\beta_2x_2β^1β^1\hat\beta_1β^2β^2\hat\beta_2

5
Comment gérer les données hiérarchiques / imbriquées dans l'apprentissage automatique
Je vais expliquer mon problème avec un exemple. Supposons que vous souhaitiez prédire le revenu d'un individu en fonction de certains attributs: {âge, sexe, pays, région, ville}. Vous avez un ensemble de données de formation comme ça train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4, 5,5,5,5), CityID=c(1,1,2,3, 4,5,6,6, 7,7,7,8), Age=c(23,48,62,63, 25,41,45,19, …
29 regression  machine-learning  multilevel-analysis  correlation  dataset  spatial  paired-comparisons  cross-correlation  clustering  aic  bic  dependent-variable  k-means  mean  standard-error  measurement-error  errors-in-variables  regression  multiple-regression  pca  linear-model  dimensionality-reduction  machine-learning  neural-networks  deep-learning  conv-neural-network  computer-vision  clustering  spss  r  weighted-data  wilcoxon-signed-rank  bayesian  hierarchical-bayesian  bugs  stan  distributions  categorical-data  variance  ecology  r  survival  regression  r-squared  descriptive-statistics  cross-section  maximum-likelihood  factor-analysis  likert  r  multiple-imputation  propensity-scores  distributions  t-test  logit  probit  z-test  confidence-interval  poisson-distribution  deep-learning  conv-neural-network  residual-networks  r  survey  wilcoxon-mann-whitney  ranking  kruskal-wallis  bias  loss-functions  frequentist  decision-theory  risk  machine-learning  distributions  normal-distribution  multivariate-analysis  inference  dataset  factor-analysis  survey  multilevel-analysis  clinical-trials 

1
Dans quelle mesure un modèle de régression est-il incorrect lorsque les hypothèses ne sont pas remplies?
Lors de l'ajustement d'un modèle de régression, que se passe-t-il si les hypothèses des résultats ne sont pas remplies, en particulier: Que se passe-t-il si les résidus ne sont pas homoscédastiques? Si les résidus montrent une tendance à la hausse ou à la baisse dans les résidus par rapport au …

2
Pourquoi les valeurs de p sont-elles trompeuses après avoir effectué une sélection pas à pas?
Prenons par exemple un modèle de régression linéaire. J'ai entendu dire que, dans l'exploration de données, après avoir effectué une sélection par étapes basée sur le critère AIC, il est trompeur de regarder les valeurs de p pour tester l'hypothèse nulle selon laquelle chaque véritable coefficient de régression est nul. …

6
Pourquoi avons-nous besoin d'une régression multivariée (par opposition à un tas de régressions univariées)?
Je viens de parcourir ce merveilleux livre: Analyse statistique multivariée appliquée par Johnson et Wichern . L'ironie est que je ne suis toujours pas en mesure de comprendre la motivation pour utiliser des modèles multivariés (régression) au lieu de modèles univariés (régression) séparés. J'ai parcouru les publications stats.statexchange 1 et …


1
Les degrés de liberté peuvent-ils être un nombre non entier?
Lorsque j'utilise GAM, cela me donne un DF résiduel de (dernière ligne du code). Qu'est-ce que ça veut dire? Au-delà de l'exemple GAM, en général, le nombre de degrés de liberté peut-il être un nombre non entier?26.626.626.6 > library(gam) > summary(gam(mpg~lo(wt),data=mtcars)) Call: gam(formula = mpg ~ lo(wt), data = mtcars) …
27 r  degrees-of-freedom  gam  machine-learning  pca  lasso  probability  self-study  bootstrap  expected-value  regression  machine-learning  linear-model  probability  simulation  random-generation  machine-learning  distributions  svm  libsvm  classification  pca  multivariate-analysis  feature-selection  archaeology  r  regression  dataset  simulation  r  regression  time-series  forecasting  predictive-models  r  mean  sem  lavaan  machine-learning  regularization  regression  conv-neural-network  convolution  classification  deep-learning  conv-neural-network  regression  categorical-data  econometrics  r  confirmatory-factor  scale-invariance  self-study  unbiased-estimator  mse  regression  residuals  sampling  random-variable  sample  probability  random-variable  convergence  r  survival  weibull  references  autocorrelation  hypothesis-testing  distributions  correlation  regression  statistical-significance  regression-coefficients  univariate  categorical-data  chi-squared  regression  machine-learning  multiple-regression  categorical-data  linear-model  pca  factor-analysis  factor-rotation  classification  scikit-learn  logistic  p-value  regression  panel-data  multilevel-analysis  variance  bootstrap  bias  probability  r  distributions  interquartile  time-series  hypothesis-testing  normal-distribution  normality-assumption  kurtosis  arima  panel-data  stata  clustered-standard-errors  machine-learning  optimization  lasso  multivariate-analysis  ancova  machine-learning  cross-validation 

3
Comment faire la différence entre les modèles de régression linéaire et non linéaire?
Je lisais le lien suivant sur la régression non linéaire SAS non linéaire . Ma compréhension de la lecture de la première section "Régression non linéaire vs régression linéaire" était que l'équation ci-dessous est en fait une régression linéaire, est-ce exact? Si oui, pourquoi? y=b1x3+b2x2+b3x+cy=b1x3+b2x2+b3x+cy = b_1x^3 + b_2x^2 + …



3
Comment modéliser cette distribution de forme étrange (presque un J inversé)
Ma variable dépendante ci-dessous ne correspond à aucune distribution de stock que je sache. La régression linéaire produit des résidus quelque peu anormaux et asymétriques à droite qui se rapportent au Y prédit de manière étrange (2e graphique). Avez-vous des suggestions de transformations ou d'autres façons d'obtenir les résultats les …

En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.