Améliorer l'estimateur minimum
Supposons que je nnn paramètres positifs pour estimer μ1,μ2,...,μnμ1,μ2,...,μn\mu_1,\mu_2,...,\mu_n et leur correspondant nnn estimations non biaisées produites par les estimateurs μ1^,μ2^,...,μn^μ1^,μ2^,...,μn^\hat{\mu_1},\hat{\mu_2},...,\hat{\mu_n} , soit E[μ1^]=μ1E[μ1^]=μ1\mathrm E[\hat{\mu_1}]=\mu_1 , E[μ2^]=μ2E[μ2^]=μ2\mathrm E[\hat{\mu_2}]=\mu_2 et ainsi de suite. Je souhaite estimer min(μ1,μ2,...,μn)min(μ1,μ2,...,μn)\mathrm{min}(\mu_1,\mu_2,...,\mu_n) en utilisant les estimations à la main. Il est clair que l'estimateur naïf min(μ1^,μ2^,...,μn^)min(μ1^,μ2^,...,μn^)\mathrm{min}(\hat{\mu_1},\hat{\mu_2},...,\hat{\mu_n}) …