Questions marquées «linear-model»

Désigne tout modèle dans lequel une variable aléatoire est liée à une ou plusieurs variables aléatoires par une fonction linéaire dans un nombre fini de paramètres.


3
Comment R gère-t-il les valeurs manquantes dans lm?
Je voudrais régresser un vecteur B par rapport à chacune des colonnes d'une matrice A. C'est trivial s'il n'y a pas de données manquantes, mais si la matrice A contient des valeurs manquantes, ma régression par rapport à A est contrainte d'inclure uniquement les lignes où tout des valeurs sont …

2
Avons-nous besoin d'une descente de gradient pour trouver les coefficients d'un modèle de régression linéaire?
J'essayais d'apprendre l'apprentissage automatique en utilisant le matériel Coursera . Dans cette conférence, Andrew Ng utilise un algorithme de descente de gradient pour trouver les coefficients du modèle de régression linéaire qui minimiseront la fonction d'erreur (fonction de coût). Pour la régression linéaire, avons-nous besoin d'une descente de gradient? Il …

5
Comment dériver l'estimateur des moindres carrés pour la régression linéaire multiple?
Dans le cas de régression linéaire simple , vous pouvez dériver l'estimateur des moindres carrés sorte que vous n'avez pas besoin de connaître pour estimery=β0+β1xy=β0+β1xy=\beta_0+\beta_1xβ^1=∑(xi−x¯)(yi−y¯)∑(xi−x¯)2β^1=∑(xi−x¯)(yi−y¯)∑(xi−x¯)2\hat\beta_1=\frac{\sum(x_i-\bar x)(y_i-\bar y)}{\sum(x_i-\bar x)^2}β^0β^0\hat\beta_0β^1β^1\hat\beta_1 Supposons que j'ai , comment puis-je dériver sans estimer ? ou n'est-ce pas possible?y=β1x1+β2x2y=β1x1+β2x2y=\beta_1x_1+\beta_2x_2β^1β^1\hat\beta_1β^2β^2\hat\beta_2

5
Comment gérer les données hiérarchiques / imbriquées dans l'apprentissage automatique
Je vais expliquer mon problème avec un exemple. Supposons que vous souhaitiez prédire le revenu d'un individu en fonction de certains attributs: {âge, sexe, pays, région, ville}. Vous avez un ensemble de données de formation comme ça train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4, 5,5,5,5), CityID=c(1,1,2,3, 4,5,6,6, 7,7,7,8), Age=c(23,48,62,63, 25,41,45,19, …
29 regression  machine-learning  multilevel-analysis  correlation  dataset  spatial  paired-comparisons  cross-correlation  clustering  aic  bic  dependent-variable  k-means  mean  standard-error  measurement-error  errors-in-variables  regression  multiple-regression  pca  linear-model  dimensionality-reduction  machine-learning  neural-networks  deep-learning  conv-neural-network  computer-vision  clustering  spss  r  weighted-data  wilcoxon-signed-rank  bayesian  hierarchical-bayesian  bugs  stan  distributions  categorical-data  variance  ecology  r  survival  regression  r-squared  descriptive-statistics  cross-section  maximum-likelihood  factor-analysis  likert  r  multiple-imputation  propensity-scores  distributions  t-test  logit  probit  z-test  confidence-interval  poisson-distribution  deep-learning  conv-neural-network  residual-networks  r  survey  wilcoxon-mann-whitney  ranking  kruskal-wallis  bias  loss-functions  frequentist  decision-theory  risk  machine-learning  distributions  normal-distribution  multivariate-analysis  inference  dataset  factor-analysis  survey  multilevel-analysis  clinical-trials 

1
Preuve que les coefficients dans un modèle OLS suivent une distribution t avec (nk) degrés de liberté
Contexte Supposons que nous ayons un modèle des moindres carrés ordinaires où nous avons coefficients dans notre modèle de régression, kkky=Xβ+ϵy=Xβ+ϵ\mathbf{y}=\mathbf{X}\mathbf{\beta} + \mathbf{\epsilon} où est un vecteur de coefficients, est la matrice de conception définie parββ\mathbf{\beta}(k×1)(k×1)(k\times1)XX\mathbf{X} X=⎛⎝⎜⎜⎜⎜⎜⎜11⋮1x11x21xn1x12…⋱………x1(k−1)⋮⋮xn(k−1)⎞⎠⎟⎟⎟⎟⎟⎟X=(1x11x12…x1(k−1)1x21…⋮⋮⋱⋮1xn1……xn(k−1))\mathbf{X} = \begin{pmatrix} 1 & x_{11} & x_{12} & \dots & x_{1\;(k-1)} \\ 1 …

1
Les degrés de liberté peuvent-ils être un nombre non entier?
Lorsque j'utilise GAM, cela me donne un DF résiduel de (dernière ligne du code). Qu'est-ce que ça veut dire? Au-delà de l'exemple GAM, en général, le nombre de degrés de liberté peut-il être un nombre non entier?26.626.626.6 > library(gam) > summary(gam(mpg~lo(wt),data=mtcars)) Call: gam(formula = mpg ~ lo(wt), data = mtcars) …
27 r  degrees-of-freedom  gam  machine-learning  pca  lasso  probability  self-study  bootstrap  expected-value  regression  machine-learning  linear-model  probability  simulation  random-generation  machine-learning  distributions  svm  libsvm  classification  pca  multivariate-analysis  feature-selection  archaeology  r  regression  dataset  simulation  r  regression  time-series  forecasting  predictive-models  r  mean  sem  lavaan  machine-learning  regularization  regression  conv-neural-network  convolution  classification  deep-learning  conv-neural-network  regression  categorical-data  econometrics  r  confirmatory-factor  scale-invariance  self-study  unbiased-estimator  mse  regression  residuals  sampling  random-variable  sample  probability  random-variable  convergence  r  survival  weibull  references  autocorrelation  hypothesis-testing  distributions  correlation  regression  statistical-significance  regression-coefficients  univariate  categorical-data  chi-squared  regression  machine-learning  multiple-regression  categorical-data  linear-model  pca  factor-analysis  factor-rotation  classification  scikit-learn  logistic  p-value  regression  panel-data  multilevel-analysis  variance  bootstrap  bias  probability  r  distributions  interquartile  time-series  hypothesis-testing  normal-distribution  normality-assumption  kurtosis  arima  panel-data  stata  clustered-standard-errors  machine-learning  optimization  lasso  multivariate-analysis  ancova  machine-learning  cross-validation 

7
Test de dépendance linéaire entre les colonnes d'une matrice
J'ai une matrice de corrélation des retours de titres dont le déterminant est zéro. (Cela est un peu surprenant car la matrice de corrélation d'échantillon et la matrice de covariance correspondante devraient théoriquement être définies positives.) Mon hypothèse est qu'au moins un titre dépend linéairement d'autres titres. Y a-t-il une …


2
Lasso bayésien vs lasso ordinaire
Différents logiciels d'implémentation sont disponibles pour le lasso . Je sais que beaucoup de choses ont été discutées entre l'approche bayésienne et l'approche fréquentiste dans différents forums. Ma question est très spécifique au lasso - Quelles sont les différences ou les avantages du lasso baysian par rapport au lasso ordinaire …




5
Hypothèses des modèles linéaires et que faire si les résidus ne sont pas normalement distribués
Je suis un peu confus quant aux hypothèses de régression linéaire. Jusqu'à présent, j'ai vérifié si: toutes les variables explicatives étaient corrélées linéairement avec la variable de réponse. (C'était le cas) il y avait une colinéarité entre les variables explicatives. (il y avait peu de colinéarité). les distances Cook des …


En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.