AIC signifie Akaike Information Criterion, qui est une technique utilisée pour sélectionner le meilleur modèle dans une classe de modèles en utilisant une probabilité pénalisée. Un AIC plus petit implique un meilleur modèle.
L'AIC et le BIC sont deux méthodes d'évaluation de l'adéquation du modèle pénalisées pour le nombre de paramètres estimés. Si je comprends bien, BIC pénalise davantage les modèles pour les paramètres libres que l’AIC. Au-delà d'une préférence basée sur la rigueur des critères, existe-t-il d'autres raisons de préférer AIC à …
J'aimerais implémenter un algorithme pour la sélection automatique de modèles. Je pense faire une régression par étapes, mais tout ira bien (il faut que cela soit basé sur des régressions linéaires). Mon problème est que je suis incapable de trouver une méthodologie, ou une implémentation open source (je suis en …
En fait, je suis en train de passer en revue un manuscrit où les auteurs comparent 5 à 6 modèles de régression logit et AIC. Cependant, certains modèles comportent des termes d'interaction sans inclure les termes de covariable individuels. Cela a-t-il un sens de faire cela? Par exemple (non spécifique …
En réponse à cette question, John Christie a suggéré d'évaluer l'adéquation des modèles de régression logistique en évaluant les résidus. Je sais comment interpréter les résidus dans les MCO, ils sont à la même échelle que le DV et très clairement la différence entre y et le y prévue par …
Dans. 34 de son PRNN, Brian Ripley, a déclaré que "Akaike (1974) a désigné l'AIC comme" un critère d'information "bien qu'il semble communément admis que le" A "signifie Akaike". Akaike (1974, p. 719) explique en introduisant la statistique AIC que "IC stands for information criterion and A is added so …
J'ai calculé AIC et AICc pour comparer deux modèles mixtes linéaires généraux; Les AIC sont positives, le modèle 1 ayant un AIC inférieur au modèle 2. Cependant, les valeurs pour AICc sont toutes les deux négatives (le modèle 1 est toujours <modèle 2). Est-il valide d'utiliser et de comparer des …
J'ai vu quelques questions ici sur ce que cela signifie en termes simples, mais elles sont trop laïques pour mon objectif ici. J'essaie de comprendre mathématiquement la signification du score AIC. Mais en même temps, je ne veux pas d’une preuve rigoureuse qui me ferait perdre de vue les points …
J'utilise généralement BIC, car je pense qu'il valorise la parcimonie plus fortement que l'AIC. Cependant, j’ai décidé d’utiliser maintenant une approche plus globale et j’aimerais aussi utiliser AIC. Je sais que Raftery (1995) a présenté de bonnes directives pour les différences BIC: 0-2 est faible, 2-4 est la preuve positive …
Je souhaite effectuer une régression logistique avec la réponse binomiale suivante et avec et comme variables prédites. X 2X1X1X_1X2X2X_2 Je peux présenter les mêmes données que les réponses de Bernoulli dans le format suivant. Les résultats de la régression logistique pour ces 2 ensembles de données sont essentiellement les mêmes. …
Est-il possible de calculer les valeurs AIC ou BIC pour les modèles de régression au lasso et d'autres modèles régularisés où les paramètres n'entrent que partiellement dans l'équation. Comment détermine-t-on les degrés de liberté? J'utilise R pour adapter les modèles de régression au lasso avec la glmnet()fonction du glmnetpackage, et …
Je vais expliquer mon problème avec un exemple. Supposons que vous souhaitiez prédire le revenu d'un individu en fonction de certains attributs: {âge, sexe, pays, région, ville}. Vous avez un ensemble de données de formation comme ça train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4, 5,5,5,5), CityID=c(1,1,2,3, 4,5,6,6, 7,7,7,8), Age=c(23,48,62,63, 25,41,45,19, …
Le critère d'information d'Akaike (AIC) et la statistique c (aire sous la courbe ROC) sont deux mesures de l'ajustement du modèle pour la régression logistique. J'ai du mal à expliquer ce qui se passe lorsque les résultats des deux mesures ne sont pas cohérents. Je suppose qu'ils mesurent des aspects …
J'utilise AIC (Akaike's Information Criterion) pour comparer des modèles non linéaires dans R. Est-il valide de comparer les AIC de différents types de modèle? Plus précisément, je compare un modèle ajusté par glm avec un modèle avec un terme à effet aléatoire ajusté par glmer (lme4). Sinon, existe-t-il un moyen …
Dans une question ailleurs sur ce site, plusieurs réponses ont mentionné que l'AIC est équivalent à la validation croisée avec absence de contact (LOO) et que le BIC est équivalent à la validation croisée K-fold. Existe-t-il un moyen de démontrer empiriquement cela dans R de telle sorte que les techniques …
Quelles sont exactement les conditions préalables qui doivent être remplies pour que la comparaison des modèles AIC fonctionne? Je viens de contourner cette question lorsque j'ai fait une comparaison comme celle-ci: > uu0 = lm(log(usili) ~ rok) > uu1 = lm(usili ~ rok) > AIC(uu0) [1] 3192.14 > AIC(uu1) [1] …
We use cookies and other tracking technologies to improve your browsing experience on our website,
to show you personalized content and targeted ads, to analyze our website traffic,
and to understand where our visitors are coming from.
By continuing, you consent to our use of cookies and other tracking technologies and
affirm you're at least 16 years old or have consent from a parent or guardian.