Dans le livre de Nocedal & Wright sur l'optimisation numérique, il y a une déclaration dans la section 2.2 (page 27), "D'une manière générale, il est plus facile de conserver l'invariance d'échelle pour les algorithmes de recherche de ligne que pour les algorithmes de région de confiance". Dans cette même …
J'essaie de comprendre comment fonctionne la méthode d'optimisation basée sur l'adjoint pour une optimisation contrainte PDE. En particulier, j'essaie de comprendre pourquoi la méthode adjointe est plus efficace pour les problèmes où le nombre de variables de conception est grand, mais le "nombre d'équations est petit". Ce que je comprends: …
Étant donné une fonction inconnue , nous pouvons évaluer sa valeur en tout point de son domaine, mais nous n'avons pas son expression. En d'autres termes, f est comme une boîte noire pour nous.f:Rd→Rf:Rd→Rf:\mathbb R^d \to \mathbb Rfff Quel est le nom du problème de trouver le minimiseur de ? …
Je résout pour une énorme matrice définie positive clairsemée utilisant la méthode du gradient conjugué (CG). Est-il possible de calculer le déterminant de utilisant les informations produites lors de la résolution?A AA x = bAx=bAx=bUNEAAUNEAA
Étant donné le système où , j'ai lu que, dans le cas où l'itération Jacobi est utilisée comme solveur, la méthode ne convergera pas si a un non-zéro composant dans l'espace nul de . Alors, comment pourrait-on déclarer formellement que, à condition que ait une composante non nulle couvrant l'espace …
Existe-t-il un moyen plus rapide de calculer les erreurs standard pour les problèmes de régression linéaire qu'en inversant ? Ici, je suppose que nous avons une régression:X′XX′XX'X y=Xβ+ε,y=Xβ+ε,y=X\beta+\varepsilon, où est n × k matrice et y est n × 1 vecteur.XXXn×kn×kn\times kyyyn×1n×1n\times 1 Pour trouver une solution au problème des …
Pour un projet, je dois implémenter ces deux méthodes et comparer leurs performances sur différentes fonctions. Il semble que la méthode du gradient conjugué soit destinée à résoudre des systèmes d'équations linéaires du for A x = bUNEX=b A\mathbf{x} = \mathbf{b} Où est une matrice n par n symétrique, définie …
J'ai un ensemble de données qui change lentement, et je dois garder une trace des vecteurs propres / valeurs propres de sa matrice de covariance. J'utilise scipy.linalg.eigh, mais c'est trop cher, et cela n'utilise pas le fait que j'ai déjà une décomposition qui n'est que légèrement incorrecte. Quelqu'un peut-il suggérer …
Je rencontre souvent l'adage général selon lequel les méthodes de point intérieur sont difficiles à démarrer. Y a-t-il une explication intuitive derrière ce conseil? Y a-t-il des situations dans lesquelles on peut s'attendre à des avantages d'un démarrage à chaud dans une méthode de point intérieur? Quelqu'un peut-il recommander des …
J'ai un problème d'optimisation qui ressemble au suivant minJ,Bs.t.∑ij|Jij|MJ+BY=XminJ,B∑ij|Jij|s.t.MJ+BY=X \begin{array}{rl} \min_{J,B} & \sum_{ij} |J_{ij}|\\ \textrm{s.t.} & MJ + BY =X \end{array} Ici, mes variables sont les matrices JJJ et BBB , mais tout le problème est toujours un programme linéaire; les variables restantes sont fixes. Lorsque j'essaie d'entrer ce programme …
Je souhaite maximiser une fonction , où θ ∈ R p .f(θ)f(θ)f(\mathbf \theta)θ∈Rpθ∈Rp\theta \in \mathbb R^p Le problème est que je ne connais pas la forme analytique de la fonction ou de ses dérivés. La seule chose que je peux faire est d'évaluer la fonction point sage, en branchant une …
Pour l'optimisation, à partir de Wikipedia : En informatique, la métaheuristique désigne une méthode informatique qui optimise un problème en essayant itérativement d'améliorer une solution candidate par rapport à une mesure de qualité donnée. Les métaheuristiques font peu ou pas d'hypothèses sur l'optimisation du problème et peuvent rechercher de très …
J'essaie d'écrire une implémentation SVM complète en Python et j'ai quelques problèmes pour calculer les coefficients Lagrange. Permettez-moi d'abord de reformuler ce que je comprends de l'algorithme pour m'assurer que je suis sur la bonne voie. Si est un ensemble de données et est l'étiquette de classe de , alorsx1,x2,...,xnx1,x2,...,xnx_1, …
J'ai un problème de formulation similaire à ce post, avec quelques différences notables: Quelles méthodes simples existe-t-il pour échantillonner de manière adaptative une fonction 2D? Comme dans ce post: J'ai un et l'évaluation de cette fonction coûte un peu cher à calculerf(x,y)f(x,y)f(x,y) Contrairement à ce poste: Je ne m'intéresse pas …
We use cookies and other tracking technologies to improve your browsing experience on our website,
to show you personalized content and targeted ads, to analyze our website traffic,
and to understand where our visitors are coming from.
By continuing, you consent to our use of cookies and other tracking technologies and
affirm you're at least 16 years old or have consent from a parent or guardian.