Questions marquées «svm»

Les machines vectorielles de support (SVM) sont un algorithme d'apprentissage automatique supervisé populaire qui peut être utilisé pour la classification ou la régression.





2
Comment calculer le mAP pour la tâche de détection du PASCAL VOC Challenge?
Comment calculer la mAP (moyenne moyenne de précision) pour la tâche de détection pour les classements Pascal VOC? http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=4 Il a dit - à la page 11 : http://homepages.inf.ed.ac.uk/ckiw/postscript/ijcv_voc09.pdf Précision moyenne (AP). Pour le défi VOC2007, la précision moyenne interpolée (Salton et Mcgill 1986) a été utilisée pour évaluer à …

2
Pouvez-vous expliquer la différence entre SVC et LinearSVC dans scikit-learn?
J'ai récemment commencé à apprendre à travailler avec sklearnet je viens de découvrir ce résultat particulier. J'ai utilisé l' digitsensemble de données disponible dans sklearnpour essayer différents modèles et méthodes d'estimation. Lorsque j'ai testé un modèle de machine à vecteurs de support sur les données, j'ai découvert qu'il existe deux …
19 svm  scikit-learn 


2
Quels types de problèmes d'apprentissage conviennent aux machines à support vectoriel?
Quelles sont les caractéristiques ou les propriétés qui indiquent qu'un certain problème d'apprentissage peut être résolu à l'aide de machines à vecteurs de support? En d'autres termes, qu'est-ce qui, lorsque vous voyez un problème d'apprentissage, vous fait dire "oh je devrais certainement utiliser des SVM pour cela" plutôt que des …


5
agrandir la carte thermique de Seaborn
Je crée un corr()df à partir d'un df d'origine. Le corr()df est sorti 70 X 70 et il est impossible de visualiser le heatmap ... sns.heatmap(df). Si j'essaie d'afficher le corr = df.corr(), le tableau ne correspond pas à l'écran et je peux voir toutes les corrélations. Est-ce un moyen …
16 visualization  pandas  plotting  machine-learning  neural-network  svm  decision-trees  svm  efficiency  python  linear-regression  machine-learning  nlp  topic-model  lda  named-entity-recognition  naive-bayes-classifier  association-rules  fuzzy-logic  kaggle  deep-learning  tensorflow  inception  classification  feature-selection  feature-engineering  machine-learning  scikit-learn  tensorflow  keras  encoding  nlp  text-mining  nlp  rnn  python  neural-network  feature-extraction  machine-learning  predictive-modeling  python  r  linear-regression  clustering  r  ggplot2  neural-network  neural-network  training  python  neural-network  deep-learning  rnn  predictive-modeling  databases  sql  programming  distribution  dataset  cross-validation  neural-network  deep-learning  rnn  machine-learning  machine-learning  python  deep-learning  data-mining  tensorflow  visualization  tools  sql  embeddings  orange  feature-extraction  unsupervised-learning  gan  machine-learning  python  data-mining  pandas  machine-learning  data-mining  bigdata  apache-spark  apache-hadoop  deep-learning  python  convnet  keras  aggregation  clustering  k-means  r  random-forest  decision-trees  reference-request  visualization  data  pandas  plotting  neural-network  keras  rnn  theano  deep-learning  tensorflow  inception  predictive-modeling  deep-learning  regression  sentiment-analysis  nlp  encoding  deep-learning  python  scikit-learn  lda  convnet  keras  predictive-modeling  regression  overfitting  regression  svm  prediction  machine-learning  similarity  word2vec  information-retrieval  word-embeddings  neural-network  deep-learning  rnn 


1
Combien de cellules LSTM dois-je utiliser?
Existe-t-il des règles générales (ou des règles réelles) concernant la quantité minimale, maximale et "raisonnable" de cellules LSTM que je devrais utiliser? Plus précisément, je me rapporte à BasicLSTMCell de TensorFlow et à la num_unitspropriété. Veuillez supposer que j'ai un problème de classification défini par: t - number of time …
12 rnn  machine-learning  r  predictive-modeling  random-forest  python  language-model  sentiment-analysis  encoding  machine-learning  deep-learning  neural-network  dataset  caffe  classification  xgboost  multiclass-classification  unbalanced-classes  time-series  descriptive-statistics  python  r  clustering  machine-learning  python  deep-learning  tensorflow  machine-learning  python  predictive-modeling  probability  scikit-learn  svm  machine-learning  python  classification  gradient-descent  regression  research  python  neural-network  deep-learning  convnet  keras  python  tensorflow  machine-learning  deep-learning  tensorflow  python  r  bigdata  visualization  rstudio  pandas  pyspark  dataset  time-series  multilabel-classification  machine-learning  neural-network  ensemble-modeling  kaggle  machine-learning  linear-regression  cnn  convnet  machine-learning  tensorflow  association-rules  machine-learning  predictive-modeling  training  model-selection  neural-network  keras  deep-learning  deep-learning  convnet  image-classification  predictive-modeling  prediction  machine-learning  python  classification  predictive-modeling  scikit-learn  machine-learning  python  random-forest  sampling  training  recommender-system  books  python  neural-network  nlp  deep-learning  tensorflow  python  matlab  information-retrieval  search  search-engine  deep-learning  convnet  keras  machine-learning  python  cross-validation  sampling  machine-learning 

2
Conséquence de la mise à l'échelle des fonctionnalités
J'utilise actuellement SVM et j'adapte mes fonctionnalités d'entraînement à la plage de [0,1]. J'ai d'abord ajusté / transformé mon ensemble d'entraînement, puis j'applique la même transformation à mon ensemble de test. Par exemple: ### Configure transformation and apply to training set min_max_scaler = MinMaxScaler(feature_range=(0, 1)) X_train = min_max_scaler.fit_transform(X_train) ### Perform …


1
Intuition pour le paramètre de régularisation dans SVM
Comment la variation du paramètre de régularisation dans un SVM change-t-elle la frontière de décision pour un ensemble de données non séparables? Une réponse visuelle et / ou un commentaire sur les comportements limitants (pour les grandes et petites régularisations) serait très utile.
11 svm 

En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.