Questions marquées «lstm»

LSTM est l'abréviation de Long Short-Term Memory. Lorsque nous utilisons ce terme la plupart du temps, nous nous référons à un réseau neuronal récurrent ou à un bloc (une partie) d'un réseau plus grand.

1
Prédiction de séries chronologiques à l'aide de LSTM: importance de rendre les séries chronologiques stationnaires
Dans ce lien sur la stationnarité et la différenciation , il a été mentionné que les modèles comme ARIMA nécessitent une série chronologique stationnaire pour la prévision car ses propriétés statistiques comme la moyenne, la variance, l'autocorrélation, etc. sont constantes dans le temps. Étant donné que les RNN ont une …







1
Alors, quel est le problème avec LSTM?
J'élargis mes connaissances sur le package Keras et j'ai travaillé avec certains des modèles disponibles. J'ai un problème de classification binaire PNL que j'essaie de résoudre et j'ai appliqué différents modèles. Après avoir travaillé avec quelques résultats et lu de plus en plus sur LSTM, il semble que cette approche …

3
Existe-t-il de bons modèles de langage prêts à l'emploi pour python?
Je prototype une application et j'ai besoin d'un modèle de langage pour calculer la perplexité sur certaines phrases générées. Existe-t-il un modèle de langage formé en python que je peux facilement utiliser? Quelque chose de simple comme model = LanguageModel('en') p1 = model.perplexity('This is a well constructed sentence') p2 = …
11 python  nlp  language-model  r  statistics  linear-regression  machine-learning  classification  random-forest  xgboost  python  sampling  data-mining  orange  predictive-modeling  recommender-system  statistics  dimensionality-reduction  pca  machine-learning  python  deep-learning  keras  reinforcement-learning  neural-network  image-classification  r  dplyr  deep-learning  keras  tensorflow  lstm  dropout  machine-learning  sampling  categorical-data  data-imputation  machine-learning  deep-learning  machine-learning-model  dropout  deep-network  pandas  data-cleaning  data-science-model  aggregation  python  neural-network  reinforcement-learning  policy-gradients  r  dataframe  dataset  statistics  prediction  forecasting  r  k-means  python  scikit-learn  labels  python  orange  cloud-computing  machine-learning  neural-network  deep-learning  rnn  recurrent-neural-net  logistic-regression  missing-data  deep-learning  autoencoder  apache-hadoop  time-series  data  preprocessing  classification  predictive-modeling  time-series  machine-learning  python  feature-selection  autoencoder  deep-learning  keras  tensorflow  lstm  word-embeddings  predictive-modeling  prediction  machine-learning-model  machine-learning  classification  binary  theory  machine-learning  neural-network  time-series  lstm  rnn  neural-network  deep-learning  keras  tensorflow  convnet  computer-vision 

2
Abandon sur quelles couches de LSTM?
En utilisant un multicouche LSTMavec dropout, est-il conseillé de mettre le dropout sur tous les calques cachés ainsi que sur les calques Denses en sortie? Dans l'article de Hinton (qui proposait Dropout), il ne plaçait Dropout que sur les couches Denses, mais c'était parce que les couches internes cachées étaient …

3
Qu'est-ce que LSTM, BiLSTM et quand les utiliser?
Je suis très nouveau dans le Deep Learning et je suis particulièrement intéressé à savoir ce que sont LSTM et BiLSTM et quand les utiliser (principaux domaines d'application). Pourquoi LSTM et BILSTM sont-ils plus populaires que RNN? Pouvons-nous utiliser ces architectures d'apprentissage en profondeur dans des problèmes non supervisés?


1
Keras LSTM avec série temporelle 1D
J'apprends à utiliser Keras et j'ai eu un succès raisonnable avec mon ensemble de données étiqueté en utilisant les exemples de Deep Learning pour Python de Chollet . L'ensemble de données est ~ 1000 séries temporelles de longueur 3125 avec 3 classes potentielles. Je voudrais aller au-delà des couches denses …


En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.