Une méthode de régularisation pour les modèles de régression qui réduit les coefficients vers zéro, rendant certains d'entre eux égaux à zéro. Ainsi, le lasso effectue la sélection des fonctionnalités.
Supposons que je veuille estimer un grand nombre de paramètres et que je veuille pénaliser certains d'entre eux car je pense qu'ils devraient avoir peu d'effet par rapport aux autres. Comment décider quel schéma de pénalisation utiliser? Quand la régression de crête est-elle plus appropriée? Quand devrais-je utiliser le lasso?
Je lis les livres sur la régression linéaire. Il y a quelques phrases sur les normes L1 et L2. Je les connais, mais je ne comprends pas pourquoi la norme L1 pour les modèles clairsemés. Quelqu'un peut utiliser donner une explication simple?
Dans quelles circonstances faut-il envisager d'utiliser des méthodes de régularisation (régression de crête, de lasso ou de moindre angle) au lieu de MCO? Au cas où cela aiderait à orienter la discussion, mon intérêt principal est d'améliorer la précision prédictive.
Je commence à me familiariser avec l’utilisation de glmnetavec LASSO Regression, où mon résultat d’intérêt est dichotomique. J'ai créé un petit cadre de données fictif ci-dessous: age <- c(4, 8, 7, 12, 6, 9, 10, 14, 7) gender <- c(1, 0, 1, 1, 1, 0, 1, 0, 0) bmi_p <- …
Je lisais Éléments d'apprentissage statistique et j'aimerais savoir pourquoi le lasso fournit une sélection de variables et non la régression de crête. Les deux méthodes minimisent la somme des carrés résiduels et ont une contrainte sur les valeurs possibles des paramètres . Pour le lasso, la contrainte est , alors …
La saison des vacances m'a donné l'occasion de m'installer près du feu avec Les éléments d'apprentissage statistique . Venant d’une perspective économétrique (fréquentiste), j’ai du mal à comprendre les utilisations de méthodes de réduction telles que la régression de crête, le lasso et la régression du moindre angle (LAR). En …
J'essaie d'utiliser un modèle LASSO pour la prévision et je dois estimer les erreurs-types. Sûrement quelqu'un a déjà écrit un paquet pour faire ceci. Mais pour autant que je sache, aucun des paquets sur CRAN qui font des prédictions à l'aide d'un LASSO ne renverra d'erreurs standard pour ces prédictions. …
D'après ce que je sais, utiliser un lasso pour la sélection de variables résout le problème des entrées corrélées. De plus, étant donné qu’elle est équivalente à la régression par le plus petit angle, elle n’est pas lente en calcul. Cependant, beaucoup de personnes (par exemple des personnes que je …
Afin de résoudre les problèmes de sélection de modèle, un certain nombre de méthodes (LASSO, régression de crête, etc.) réduiront les coefficients des variables prédictives vers zéro. Je cherche une explication intuitive de la raison pour laquelle cela améliore la capacité de prédiction. Si le véritable effet de la variable …
Pour le problème de lasso tels que \ | \ beta \ | _1 \ leq t . Je vois souvent le résultat de seuillage souple \ beta_j ^ {\ text {lasso}} = \ mathrm {sgn} (\ beta ^ {\ text {LS}} _ j) (| \ beta_j ^ {\ text …
J'aimerais trouver des prédicteurs pour une variable dépendante continue sur un ensemble de 30 variables indépendantes. J'utilise la régression de Lasso telle qu'implémentée dans le paquet glmnet de R. Voici du code factice: # generate a dummy dataset with 30 predictors (10 useful & 20 useless) y=rnorm(100) x1=matrix(rnorm(100*20),100,20) x2=matrix(y+rnorm(100*10),100,10) x=cbind(x1,x2) …
Désolé si cette question pose un peu de base. Je cherche à utiliser la sélection de variables LASSO pour un modèle de régression linéaire multiple dans R. J'ai 15 prédicteurs, dont l'un est catégorique (cela posera-t-il un problème?). Après avoir réglé mes et j'utilise les commandes suivantes:xxxyyy model = lars(x, …
La régression aux angles moindres et le lasso tendent à produire des chemins de régularisation très similaires (identiques sauf lorsqu'un coefficient passe à zéro). Ils peuvent tous deux être ajustés efficacement par des algorithmes pratiquement identiques. Y a-t-il jamais une raison pratique de préférer une méthode à une autre?
À la page 223 de l' Introduction à l'apprentissage statistique , les auteurs résument les différences entre la régression de la crête et le lasso. Ils fournissent un exemple (Figure 6.9) du cas où "le lasso tend à surpasser la régression de la crête en termes de biais, de variance …
We use cookies and other tracking technologies to improve your browsing experience on our website,
to show you personalized content and targeted ads, to analyze our website traffic,
and to understand where our visitors are coming from.
By continuing, you consent to our use of cookies and other tracking technologies and
affirm you're at least 16 years old or have consent from a parent or guardian.