Questions marquées «umvue»


2
Le pdf de
Supposons que X1,X2,...,XnX1,X2,...,XnX_1, X_2,...,X_n soit iid de N(μ,σ2)N(μ,σ2)N(\mu,\sigma^2) avec inconnu μ∈Rμ∈R\mu \in \mathcal Ret σ2>0σ2>0\sigma^2>0 Soit Z=X1−X¯S,Z=X1−X¯S,Z=\frac{X_1-\bar{X}}{S},S est ici l'écart type. On peut montrer que ZZZ a le pdf de Lebesgue f(z)=n−−√Γ(n−12)π−−√(n−1)Γ(n−22)[1−nz2(n−1)2]n/2−2I(0,(n−1)/n√)(|Z|)f(z)=nΓ(n−12)π(n−1)Γ(n−22)[1−nz2(n−1)2]n/2−2I(0,(n−1)/n)(|Z|)f(z)=\frac{\sqrt{n} \Gamma\left(\frac{n-1}{2}\right)}{\sqrt{\pi}(n-1)\Gamma\left(\frac{n-2}{2}\right)}\left[1-\frac{nz^2}{(n-1)^2}\right]^{n/2-2}I_{(0,(n-1)/\sqrt{n})}(|Z|) Ma question est alors comment obtenir ce pdf? La question est d' ici dans l'exemple 3.3.4 de …
15 self-study  umvue 

2
Comment savoir quelle méthode d'estimation de paramètres choisir?
Il existe de nombreuses méthodes d'estimation des paramètres. MLE, UMVUE, MoM, décision-théorique, et d'autres semblent tous avoir un cas assez logique pour expliquer pourquoi ils sont utiles pour l'estimation des paramètres. Une méthode est-elle meilleure que les autres, ou s'agit-il simplement de savoir comment définir l'estimateur «le mieux adapté» (semblable …

1
Sur l'existence de l'UMVUE et le choix de l'estimateur de dans la population
Soit soit un échantillon aléatoire tiré de population où .(X1,X2,⋯,Xn)(X1,X2,⋯,Xn)(X_1,X_2,\cdots,X_n)N(θ,θ2)N(θ,θ2)\mathcal N(\theta,\theta^2)θ∈Rθ∈R\theta\in\mathbb R Je recherche l'UMVUE de .θθ\theta La densité conjointe de est(X1,X2,⋯,Xn)(X1,X2,⋯,Xn)(X_1,X_2,\cdots,X_n) fθ(x1,x2,⋯,xn)=∏i=1n1θ2π−−√exp[−12θ2(xi−θ)2]=1(θ2π−−√)nexp[−12θ2∑i=1n(xi−θ)2]=1(θ2π−−√)nexp[1θ∑i=1nxi−12θ2∑i=1nx2i−n2]=g(θ,T(x))h(x)∀(x1,⋯,xn)∈Rn,∀θ∈Rfθ(x1,x2,⋯,xn)=∏i=1n1θ2πexp⁡[−12θ2(xi−θ)2]=1(θ2π)nexp⁡[−12θ2∑i=1n(xi−θ)2]=1(θ2π)nexp⁡[1θ∑i=1nxi−12θ2∑i=1nxi2−n2]=g(θ,T(x))h(x)∀(x1,⋯,xn)∈Rn,∀θ∈R\begin{align} f_{\theta}(x_1,x_2,\cdots,x_n)&=\prod_{i=1}^n\frac{1}{\theta\sqrt{2\pi}}\exp\left[-\frac{1}{2\theta^2}(x_i-\theta)^2\right] \\&=\frac{1}{(\theta\sqrt{2\pi})^n}\exp\left[-\frac{1}{2\theta^2}\sum_{i=1}^n(x_i-\theta)^2\right] \\&=\frac{1}{(\theta\sqrt{2\pi})^n}\exp\left[\frac{1}{\theta}\sum_{i=1}^n x_i-\frac{1}{2\theta^2}\sum_{i=1}^nx_i^2-\frac{n}{2}\right] \\&=g(\theta,T(\mathbf x))h(\mathbf x)\qquad\forall\,(x_1,\cdots,x_n)\in\mathbb R^n\,,\forall\,\theta\in\mathbb R \end{align} , où g( θ , T( x ) ) = 1( θ 2 π√)nexp[ 1θ∑ni = 1Xje- …

1
Trouvez l'unique MVUE
Cette question est tirée de l'introduction de Robert Hogg aux statistiques mathématiques, 6e version, problème 7.4.9, page 388. Laissez X1,...,XnX1,...,XnX_1,...,X_n soit iid avec pdf f(x;θ)=1/3θ,−θ<x<2θ,f(x;θ)=1/3θ,−θ<x<2θ,f(x;\theta)=1/3\theta,-\theta0 . (a) Trouvez la mle θ de θθ^θ^\hat{\theta}θθ\theta (b) est θ une statistique suffisante pour θ ? Pourquoi ?θ^θ^\hat{\theta}θθ\theta (c) est (n+1)θ^/n(n+1)θ^/n(n+1)\hat{\theta}/n la MVUE unique …

1
Trouvez UMVUE sur
Laissez X1,X2,...,XnX1,X2,...,XnX_1, X_2, . . . , X_n be iid variables aléatoires ayant pdf fX(x∣θ)=θ(1+x)−(1+θ)I(0,∞)(x)fX(x∣θ)=θ(1+x)−(1+θ)I(0,∞)(x)f_X(x\mid\theta) =\theta(1 +x)^{−(1+\theta)}I_{(0,\infty)}(x) où θ>0θ>0\theta >0 . Donnez l'UMVUE de 1θ1θ\frac{1}{\theta} et calculer sa variance J'ai appris deux de ces méthodes pour obtenir des UMVUE: Limite inférieure de Cramer-Rao (CRLB) Lehmann-Scheffe Thereom Je vais tenter cela …

2
Statistiques complètes pour
Je voudrais savoir si la statistique est complète pour dans un paramètre .T(X1,…,Xn)=∑ni=1(Xi−X¯n)2n−1T(X1,…,Xn)=∑i=1n(Xi−X¯n)2n−1T(X_1,\ldots,X_n)=\frac{\sum_{i=1}^n (X_i-\bar{X}_n)^2}{n-1}σ2σ2\sigma^2N(μ,σ2)N(μ,σ2)N(\mu,\sigma^2) Cela dépend-il de savoir si est déjà connu ou non? Si est complet pour , alors par Lehmann-Scheffé c'est UMVUE . Mais si était connu, nous aurions pu considérer dont la variance est égale à la …

2
Trouver la distribution conjointe de et
Cette question est tirée de la question 7.6.7 de l'introduction à la statistique mathématique de Robert Hogg, 6e version. Le problème est : Soit un échantillon aléatoire de taille d'une distribution avec le pdfnnnf(x;θ)=(1/θ)exp(−x/θ)I(0,∞)(x)f(x;θ)=(1/θ)exp⁡(−x/θ)I(0,∞)(x)f(x;\theta)=(1/\theta)\exp(-x/\theta)\mathbb{I}_{(0,\infty)}(x) Trouvez le MLE et la MVUE de .P(X≤2)P(X≤2)P(X \le 2) Je sais comment trouver le MLE. …

En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.