Questions marquées «mgf»

La fonction génératrice de moment (mgf) est une fonction réelle qui permet de dériver les moments d'une variable aléatoire et peut donc caractériser toute sa distribution. Utilisez également pour son logarithme, la fonction génératrice de cumulant.


1
Fonctions de génération de moment et transformations de Fourier?
Une fonction génératrice de moments est-elle une transformée de Fourier d' une fonction de densité de probabilité? En d'autres termes, une fonction génératrice de moments est-elle simplement la résolution spectrale d'une distribution de densité de probabilité d'une variable aléatoire, c'est-à-dire une manière équivalente de caractériser une fonction en termes d' …
10 moments  mgf  cumulants 

2
Attente de la racine carrée de la somme des variables aléatoires uniformes carrées indépendantes
Soit X1,…,Xn∼U(0,1)X1,…,Xn∼U(0,1)X_1,\dots,X_n \sim U(0,1) des variables aléatoires uniformes standard indépendantes et distribuées de manière identique. Let Yn=∑inX2iI seek: E[Yn−−√]Let Yn=∑inXi2I seek: E[Yn]\text{Let }\quad Y_n=\sum_i^nX_i^2 \quad \quad \text{I seek: } \quad \mathbb{E}\big[\sqrt{Y_n } \big] L'attente de YnYnY_n est simple: E[X2]E[Yn]=∫10y2y√=13=E[∑inX2i]=∑inE[X2i]=n3E[X2]=∫01y2y=13E[Yn]=E[∑inXi2]=∑inE[Xi2]=n3\begin{align} \mathbb{E}\left[X^2\right] &=\int_0^1\frac{y}{2\sqrt{y}}=\frac{1}{3}\\ \mathbb{E}\left[Y_n\right] &=\mathbb{E}\left[\sum_i^nX_i^2\right] = \sum_i^n\mathbb{E}\left[X_i^2\right]=\frac{n}{3} \end{align} Maintenant pour la partie …

1
Fonction de génération de moment du produit intérieur de deux vecteurs aléatoires gaussiens
Quelqu'un peut-il suggérer comment je peux calculer la fonction de génération de moment du produit intérieur de deux vecteurs aléatoires gaussiens, chacun distribué comme , indépendamment l'un de l'autre? Y a-t-il un résultat standard disponible pour cela? Tout pointeur est très apprécié.N( 0 , σ2)N(0,σ2)\mathcal N(0,\sigma^2)


1
Moment / mgf de cosinus des vecteurs directionnels?
Quelqu'un peut-il suggérer comment je peux calculer le deuxième moment (ou la fonction de génération de moment entier) du cosinus de deux vecteurs aléatoires gaussiens x,yx,yx,y, chacun distribué comme N(0,Σ)N(0,Σ)\mathcal N (0,\Sigma), indépendants les uns des autres? IE, moment pour la variable aléatoire suivante ⟨x,y⟩∥x∥∥y∥⟨x,y⟩‖x‖‖y‖\frac{\langle x, y\rangle}{\|x\|\|y\|} La question la …


1
Montrer que ont une distribution normale
Soit et indépendants. Montrer que ont une distribution normale et trouver les paramètres de cette distribution.Y1∼SN(μ1,σ21,λ)Y1∼SN(μ1,σ12,λ)Y_1\sim SN(\mu_1,\sigma_1^2,\lambda)Y2∼N(μ2,σ22)Y2∼N(μ2,σ22)Y_2\sim N(\mu_2,\sigma_2^2)Y1+Y2Y1+Y2Y_1+Y_2 Comme les variables aléatoires sont indépendantes, j'ai essayé d'utiliser la convolution. SoitZ=Y1+Y2Z=Y1+Y2Z=Y_1+Y_2 fZ(z)=∫∞−∞2ϕ(y1|μ1,σ1)Φ(λ(y1−μ1σ1))ϕ(z−y1|μ2,σ22)dy1fZ(z)=∫−∞∞2ϕ(y1|μ1,σ1)Φ(λ(y1−μ1σ1))ϕ(z−y1|μ2,σ22)dy1f_Z(z)=\int_{-\infty}^{\infty}2\phi(y_1|\mu_1,\sigma_1)\Phi\Big(\lambda(\frac{y_1-\mu_1}{\sigma_1})\Big)\phi(z-y_1|\mu_2,\sigma_2^2)\,\text{d}y_1 Ici et sont respectivement les pdf et cdf normaux standard.ϕ()ϕ()\phi()Φ()Φ()\Phi() fZ(z)=∫∞−∞212πσ1−−−−√12πσ2−−−−√exp(−12σ21(y1−μ)2−12σ22((z−y1)2−μ)2)Φ(λ(y1−μ1σ1))dy1fZ(z)=∫−∞∞212πσ112πσ2exp(−12σ12(y1−μ)2−12σ22((z−y1)2−μ)2)Φ(λ(y1−μ1σ1))dy1f_Z(z)=\int_{-\infty}^{\infty}2\frac{1}{\sqrt{2\pi\sigma_1}}\frac{1}{\sqrt{2\pi\sigma_2}}exp\Big(-\frac{1}{2\sigma_1^2}(y_1-\mu)^2-\frac{1}{2\sigma_2^2}((z-y_1)^2-\mu)^2\Big)\Phi\Big(\lambda(\frac{y_1-\mu_1}{\sigma_1})\Big)\,\text{d}y_1 Pour les notations simplifiées, soitk = 212 πσ1√12 …
En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.