3
Trouvez la distribution et passez à la distribution normale
J'ai des données qui décrivent la fréquence à laquelle un événement se produit pendant une heure ("nombre par heure", nph) et la durée des événements ("durée en secondes par heure", dph). Ce sont les données d'origine: nph <- c(2.50000000003638, 3.78947368414551, 1.51456310682008, 5.84686774940732, 4.58823529414907, 5.59999999993481, 5.06666666666667, 11.6470588233699, 1.99999999998209, NA, 4.46153846149851, 18, …
8
normal-distribution
data-transformation
logistic
generalized-linear-model
ridge-regression
t-test
wilcoxon-signed-rank
paired-data
naive-bayes
distributions
logistic
goodness-of-fit
time-series
eviews
ecm
panel-data
reliability
psychometrics
validity
cronbachs-alpha
self-study
random-variable
expected-value
median
regression
self-study
multiple-regression
linear-model
forecasting
prediction-interval
normal-distribution
excel
bayesian
multivariate-analysis
modeling
predictive-models
canonical-correlation
rbm
time-series
machine-learning
neural-networks
fishers-exact
factorisation-theorem
svm
prediction
linear
reinforcement-learning
cdf
probability-inequalities
ecdf
time-series
kalman-filter
state-space-models
dynamic-regression
index-decomposition
sampling
stratification
cluster-sample
survey-sampling
distributions
maximum-likelihood
gamma-distribution