Questions marquées «generalized-linear-model»

Une généralisation de la régression linéaire permettant des relations non linéaires via une "fonction de liaison" et pour que la variance de la réponse dépende de la valeur prédite. (À ne pas confondre avec le «modèle linéaire général» qui étend le modèle linéaire ordinaire à la structure de covariance générale et à la réponse multivariée.)

1
Quand utiliser les GLM binomiaux Poisson vs géométrique vs négatif pour les données de comptage?
J'essaie de me présenter quand il convient d'utiliser quel type de régression (géométrique, Poisson, binôme négatif) avec les données de comptage, dans le cadre GLM (seules 3 des 8 distributions GLM sont utilisées pour les données de comptage, bien que la plupart de ce que J'ai lu des centres autour …



1
Pourquoi le quasi-Poisson en GLM n'est-il pas traité comme un cas particulier de binôme négatif?
J'essaie d'adapter les modèles linéaires généralisés à certains ensembles de données de comptage qui pourraient ou non être sur-dispersés. Les deux distributions canoniques qui s'appliquent ici sont le binôme de Poisson et négatif (Negbin), avec EV et varianceμμ\mu Vun rP= μVunerP=μVar_P = \mu Vun rNB= μ + μ2θVunerNB=μ+μ2θVar_{NB} = \mu …


1
Des réseaux bayésiens aux réseaux neuronaux: comment transposer une régression multivariée en un réseau multi-sorties
J'ai affaire à un modèle linéaire hiérarchique bayésien , ici le réseau qui le décrit. YYY représente les ventes quotidiennes d'un produit dans un supermarché (observé). XXX est une matrice connue de régresseurs, y compris les prix, les promotions, le jour de la semaine, la météo, les vacances. 1SSS est …

1
Existe-t-il une explication intuitive de la raison pour laquelle la régression logistique ne fonctionnera pas pour un cas de séparation parfait? Et pourquoi l'ajout de la régularisation le corrigera?
Nous avons beaucoup de bonnes discussions sur la séparation parfaite dans la régression logistique. Telles que, la régression logistique dans R a conduit à une séparation parfaite (phénomène de Hauck-Donner). Maintenant quoi? et le modèle de régression logistique ne converge pas . Personnellement, je pense toujours que ce n'est pas …


2
Transformation des données de proportion: lorsque la racine carrée de l'arcsin ne suffit pas
Existe-t-il une alternative (plus forte?) À la transformation de racine carrée en arcsin pour les données de pourcentage / proportion? Dans l'ensemble de données sur lequel je travaille en ce moment, une hétéroscédasticité marquée subsiste après l'application de cette transformation, c'est-à-dire que le tracé des valeurs résiduelles en fonction des …

3
Comment interpréter le terme d'interception dans un GLM?
J'utilise R et j'ai analysé mes données avec GLM avec lien binomial. Je veux savoir quelle est la signification de l'interception dans le tableau de sortie. L'ordonnée à l'origine pour l'un de mes modèles est significativement différente, mais la variable ne l'est pas. Qu'est-ce que ça veut dire? Quelle est …




1
Qualité de l'ajustement et quel modèle choisir la régression linéaire ou Poisson
J'ai besoin de conseils concernant deux dilemmes principaux dans ma recherche, qui est une étude de cas de 3 grands produits pharmaceutiques et de l'innovation. Le nombre de brevets par an est la variable dépendante. Mes questions sont Quels sont les critères les plus importants pour un bon modèle? Qu'est-ce …

1
Pourquoi utiliser la méthode de Newton pour l'optimisation de la régression logistique est-elle appelée moindres carrés itératifs repondérés?
Pourquoi utiliser la méthode de Newton pour l'optimisation de la régression logistique est-elle appelée moindres carrés itératifs repondérés? Cela ne me semble pas clair, car la perte logistique et la perte des moindres carrés sont des choses complètement différentes.

En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.