Questions marquées «penalized»

3
LASSO avec des termes d'interaction - est-ce correct si les effets principaux sont réduits à zéro?
La régression LASSO réduit les coefficients vers zéro, permettant ainsi une sélection efficace du modèle. Je crois que dans mes données, il existe des interactions significatives entre les covariables nominales et continues. Cependant, les «principaux effets» du vrai modèle ne sont pas nécessairement significatifs (non nuls). Bien sûr, je ne …

2
KKT versus formulation non contrainte de régression au lasso
La régression pénalisée L1 (alias lasso) est présentée en deux formulations. Soit les deux fonctions objectives Q1=12||Y−Xβ||22Q2=12||Y−Xβ||22+λ||β||1.Q1=12||Y−Xβ||22Q2=12||Y−Xβ||22+λ||β||1. Q_1 = \frac{1}{2}||Y - X\beta||_2^2 \\ Q_2 =\frac{1}{2}||Y - X\beta||_2^2 + \lambda ||\beta||_1. Alors les deux formulations différentes sont argminβQ1argminβQ1 \text{argmin}_\beta \; Q_1 sous réserve de ||β||1≤t,||β||1≤t, ||\beta||_1 \leq t, et, de façon …

1
Quelle est la plage typique de valeurs possibles pour le paramètre de rétrécissement dans la régression pénalisée?
En régression lasso ou crête, il faut spécifier un paramètre de rétrécissement, souvent appelé par ou α . Cette valeur est souvent choisie par validation croisée en vérifiant un tas de valeurs différentes sur les données d'entraînement et en voyant celle qui donne le meilleur, par exemple R 2 sur …






1
Quel modèle d'apprentissage en profondeur peut classer des catégories qui ne s'excluent pas mutuellement
Exemples: J'ai une phrase dans la description de poste: "Java senior engineer in UK". Je veux utiliser un modèle d'apprentissage profond pour le prédire en 2 catégories: English et IT jobs. Si j'utilise un modèle de classification traditionnel, il ne peut prédire qu'une seule étiquette avec softmaxfonction à la dernière …
9 machine-learning  deep-learning  natural-language  tensorflow  sampling  distance  non-independent  application  regression  machine-learning  logistic  mixed-model  control-group  crossover  r  multivariate-analysis  ecology  procrustes-analysis  vegan  regression  hypothesis-testing  interpretation  chi-squared  bootstrap  r  bioinformatics  bayesian  exponential  beta-distribution  bernoulli-distribution  conjugate-prior  distributions  bayesian  prior  beta-distribution  covariance  naive-bayes  smoothing  laplace-smoothing  distributions  data-visualization  regression  probit  penalized  estimation  unbiased-estimator  fisher-information  unbalanced-classes  bayesian  model-selection  aic  multiple-regression  cross-validation  regression-coefficients  nonlinear-regression  standardization  naive-bayes  trend  machine-learning  clustering  unsupervised-learning  wilcoxon-mann-whitney  z-score  econometrics  generalized-moments  method-of-moments  machine-learning  conv-neural-network  image-processing  ocr  machine-learning  neural-networks  conv-neural-network  tensorflow  r  logistic  scoring-rules  probability  self-study  pdf  cdf  classification  svm  resampling  forecasting  rms  volatility-forecasting  diebold-mariano  neural-networks  prediction-interval  uncertainty 

En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.