J'entends souvent dire que pour de nombreux problèmes, nous connaissons des algorithmes randomisés très élégants, mais pas, ou seulement des solutions déterministes plus compliquées. Cependant, je n'en connais que quelques exemples. Plus en évidence
- Tri rapide randomisé (et algorithmes géométriques associés, par exemple pour les coques convexes)
- Mincut aléatoire
- Test d'identité polynomiale
- Problème de mesure de Klee
Parmi ceux-ci, seuls les tests d'identité polynomiale semblent être vraiment difficiles sans l'utilisation de l'aléatoire.
Connaissez-vous plus d'exemples de problèmes où une solution randomisée est très élégante ou très efficace, mais pas les solutions déterministes? Idéalement, les problèmes devraient être faciles à motiver pour les profanes (contrairement, par exemple, aux tests d'identité polynomiale).