De nombreux programmes d’informatique requièrent deux ou trois cours de calcul. Je me demande comment et quand le calcul est utilisé en informatique? Le contenu en informatique d'un diplôme en informatique a tendance à se concentrer sur les algorithmes, les systèmes d'exploitation, les structures de données, l'intelligence artificielle, le génie …
Actuellement, j'étudie moi-même l'introduction aux algorithmes (CLRS) et il y a une méthode particulière qu'ils décrivent dans le livre pour résoudre les relations de récurrence. La méthode suivante peut être illustrée par cet exemple. Supposons que nous ayons la récurrence T( n ) = 2 T( n--√) + journalnT(n)=2T(n)+lognT(n) = …
Comme suit de ma question précédente , j'ai joué avec l' hypothèse de Riemann comme une question de mathématiques récréatives. Dans le processus, je suis arrivé à une récurrence assez intéressante, et je suis curieux de son nom, de ses réductions et de son aptitude à la solvabilité de l'écart …
J'ai lu Introduction aux algorithmes de Cormen et al. et je lis l'énoncé du théorème maître à partir de la page 73 . Dans le cas 3, il existe également une condition de régularité qui doit être satisfaite pour utiliser le théorème: ... 3. Si f(n)=Ω(nlogba+ε)f(n)=Ω(nlogba+ε)\qquad \displaystyle f(n) = \Omega(n^{\log_b …
Lorsque nous comparons la complexité de deux algorithmes, il arrive généralement que f(n)=O(g(n))f(n)=O(g(n))f(n) = O(g(n)) ou (éventuellement les deux), où et sont les temps d'exécution (par exemple) des deux algorithmes.f gg(n)=O(f(n))g(n)=O(f(n))g(n) = O(f(n))fffggg Est-ce toujours le cas? Autrement dit, au moins une des relations f(n)=O(g(n))f(n)=O(g(n))f(n) = O(g(n)) et g(n)=O(f(n))g(n)=O(f(n))g(n) = …
Je comprends que est plus rapide que et plus lent que . Ce qui est difficile à comprendre pour moi, c'est comment comparer réellement et avec où .Θ ( n )Θ(n)\Theta(n)Θ ( n logn )Θ(nJournaln)\Theta(n\log n)Θ ( n / logn )Θ(n/Journaln)\Theta(n/\log n)Θ ( n logn )Θ(nJournaln)\Theta(n \log n)Θ ( n …
J'ai donc cette question pour prouver une déclaration: O(n)⊂Θ(n)O(n)⊂Θ(n)O(n)\subset\Theta(n) ... Je n'ai pas besoin de savoir comment le prouver, juste que dans mon esprit cela n'a aucun sens et je pense que ce devrait plutôt être Θ(n)⊂O(n)Θ(n)⊂O(n)\Theta(n)\subset O(n) . Ma compréhension est que O(n)O(n)O(n) est l'ensemble de toutes les fonctions …
C'est une question de devoirs du livre d'Udi Manber. Tout indice serait bien :) Je dois montrer que: n ( log3( n ) )5= O ( n1.2)n(log3(n))5=O(n1.2)n(\log_3(n))^5 = O(n^{1.2}) J'ai essayé d'utiliser le théorème 3.1 du livre: (pour c > 0 ,)F( n )c= O ( aF( n ))f(n)c=O(af(n))f(n)^c = …
Supposons que j'ai deux fonctions et et je souhaite déterminer siGFFFggG F( x ) = ∫G ( x ) dx .F(X)=∫g(X)réX.F(x) = \int G(x)dx. Supposons que mes fonctions soient composées de fonctions élémentaires (polynômes, exponentielles, logs et fonctions trigonométriques), mais pas, disons, série Taylor. Ce problème est-il décidable? Sinon, est-ce …
Je suis un doctorant débutant. étudiant en informatique, et j'essaie de comprendre certains articles classiques de théorie des jeux, tels que ceux de Nash, Kalai et Smorodinsky. Mais j'ai du mal à comprendre les parties mathématiques. Il semble que ces articles ont été écrits par des mathématiciens, pour des mathématiciens. …
La source de cette question provient d'un cours de premier cycle que je suis, qui couvre une introduction à l'analyse des algorithmes. Ce n'est pas pour les devoirs, mais plutôt une question posée dans CLRS. Vous avez une machine lente fonctionnant à xxx MIPS, et une machine rapide fonctionnant à …
We use cookies and other tracking technologies to improve your browsing experience on our website,
to show you personalized content and targeted ads, to analyze our website traffic,
and to understand where our visitors are coming from.
By continuing, you consent to our use of cookies and other tracking technologies and
affirm you're at least 16 years old or have consent from a parent or guardian.