Les moments sont des résumés des caractéristiques des variables aléatoires (p. Ex. Emplacement, échelle). À utiliser également pour les moments fractionnaires.
J'ai vu ce qui suit dans un manuel et j'ai du mal à comprendre le concept. Je comprends que est normalement distribué avec E ( ) = 0 et Var ( ) = .XnXnX_nXnXnX_nXnXnX_n1n1n\frac{1}{n} Cependant, je ne comprends pas pourquoi la multiplication de par le rendrait normal.XnXnX_nn−−√n\sqrt n
J'essaie de comprendre comment fonctionne la matrice de covariance . Supposons donc que nous ayons deux variables:X, YX,YX, Y, où Cov ( X, Y) = E [ ( x - E [ X] ) ( y- E [ Y] ) ]Cov(X,Y)=E[(x−E[X])(y−E[Y])]\text{Cov}(X,Y) = \mathbb{E}[(x -\mathbb{E}[X])(y-\mathbb{E}[Y])] donne la relation entre les variables, …
Question simple, mais étonnamment difficile à trouver en ligne. Je sais que pour un RV , on définit le kème moment comme où l'égalité suit si , pour une densité et Lebesgue mesure .XXX∫Xk dP=∫xkf(x) dx∫Xk dP=∫xkf(x) dx\int X^k \ d P = \int x^k f(x) \ dxp=f⋅mp=f⋅mp = f …
de calculer l'espérance pour arbitraire (pour l'attente est infinie) si est lognormalement distribué, ie .E[ecX]E[ecX]E[e^{cX}]c<0c<0c<0c>0c>0c>0XXXlog(X)∼N(μ,σ)log(X)∼N(μ,σ)\log(X) \sim N(\mu, \sigma) Mon idée était d'écrire l'attente comme intégrale, mais je n'ai pas vu comment procéder: E[ecX]=12σπ−−−√∫∞01xexp(cx−(logx−μ)22σ2)dxE[ecX]=12σπ∫0∞1xexp(cx−(logx−μ)22σ2)dxE[e^{cX}] = \frac{1}{\sqrt{2\sigma\pi}}\int_0^\infty \frac{1}{x}\exp\left(cx - \frac{(\log x - \mu)^2}{2\sigma^2}\right)dx J'ai également essayé la formule Itô (la tâche réelle …
We use cookies and other tracking technologies to improve your browsing experience on our website,
to show you personalized content and targeted ads, to analyze our website traffic,
and to understand where our visitors are coming from.
By continuing, you consent to our use of cookies and other tracking technologies and
affirm you're at least 16 years old or have consent from a parent or guardian.