Questions marquées «likelihood»

Étant donné une variable aléatoire qui résulte d'une distribution paramétrée F (X; θ) , la vraisemblance est définie comme la probabilité des données observées en fonction de θ: \ text {L} (θ) = \ text {P} (θ ; X = x)XF(X;θ)θ:L(θ)=P(θ;X=x)

5
Un exemple où le principe de vraisemblance * compte vraiment *?
Existe-t-il un exemple où deux tests défendables différents avec des probabilités proportionnelles conduiraient à des inférences nettement différentes (et également défendables), par exemple, où les valeurs de p sont de l'ordre de grandeur très éloignées, mais le pouvoir des alternatives est similaire? Tous les exemples que je vois sont très …

2
Si le principe de vraisemblance se heurte à la probabilité fréquentiste, alors en rejetons-nous un?
Dans un commentaire récemment publié ici, un commentateur a signalé un blog de Larry Wasserman qui souligne (sans aucune source) que l'inférence fréquentiste se heurte au principe de vraisemblance. Le principe de vraisemblance dit simplement que les expériences produisant des fonctions de vraisemblance similaires devraient produire une inférence similaire. Deux …


5
Que signifie «la probabilité n'est définie que jusqu'à une constante multiplicative de proportionnalité» dans la pratique?
Je lis un article où les auteurs mènent d'une discussion sur l'estimation du maximum de vraisemblance au théorème de Bayes, apparemment comme une introduction pour les débutants. À titre d'exemple de vraisemblance, ils commencent par une distribution binomiale: p(x|n,θ)=(nx)θx(1−θ)n−xp(x|n,θ)=(nx)θx(1−θ)n−xp(x|n,\theta) = \binom{n}{x}\theta^x(1-\theta)^{n-x} puis connectez les deux côtés ℓ(θ|x,n)=xln(θ)+(n−x)ln(1−θ)ℓ(θ|x,n)=xln⁡(θ)+(n−x)ln⁡(1−θ)\ell(\theta|x, n) = x …

4
Motivation théorique pour utiliser log-vraisemblance vs vraisemblance
J'essaie de comprendre à un niveau plus profond l'ubiquité du log-vraisemblance (et peut-être plus généralement log-probabilités) dans les statistiques et la théorie des probabilités. Les probabilités logarithmiques apparaissent partout: nous travaillons généralement avec la vraisemblance logarithmique pour l'analyse (par exemple pour la maximisation), les informations de Fisher sont définies en …

4
Comment le cadre bayésien est-il meilleur dans l'interprétation lorsque nous utilisons habituellement des priors non informatifs ou subjectifs?
On fait souvent valoir que le cadre bayésien a un grand avantage dans l'interprétation (sur fréquentiste), car il calcule la probabilité d'un paramètre étant donné les données - au lieu de comme dans le cadre fréquentiste. Jusqu'ici tout va bien.p ( x | θ )p ( θ | x )p(θ|x)p(\theta|x)p …

1
Questions sur le principe de vraisemblance
J'essaie actuellement de comprendre le principe de vraisemblance et je ne comprends vraiment pas du tout. Donc, j'écrirai toutes mes questions sous forme de liste, même si ce sont des questions assez basiques. Que signifie exactement l'expression «toutes les informations» dans le contexte de ce principe? (comme dans toutes les …

2
Comparaison de l'AIC d'un modèle et de sa version transformée en journal
L'essence de ma question est la suivante: Soit Y∈RnY∈RnY \in \mathbb{R}^n une variable aléatoire normale multivariée de moyenne μμ\mu et de matrice de covariance ΣΣ\Sigma . Soit Z:=log(Y)Z:=log⁡(Y)Z := \log(Y) , c'est-à-dire Zi=log(Yi),i∈{1,…,n}Zi=log⁡(Yi),i∈{1,…,n}Z_i = \log(Y_i), i \in \{1,\ldots,n\} . Comment comparer l'AIC d'un ajustement de modèle aux réalisations observées de …

2
Quel serait un exemple d'un modèle vraiment simple avec une probabilité insoluble?
Le calcul bayésien approximatif est une technique vraiment cool pour ajuster essentiellement n'importe quel modèle stochastique, destiné aux modèles où la probabilité est intraitable (par exemple, vous pouvez échantillonner à partir du modèle si vous fixez les paramètres mais vous ne pouvez pas calculer numériquement, algorithmiquement ou analytiquement la probabilité). …

3
Trouver le MLE pour un processus Hawkes exponentiel univarié
Le processus exponentiel univarié de Hawkes est un processus ponctuel auto-excitant avec un taux d'arrivée d'événements de: λ(t)=μ+∑ti&lt;tαe−β(t−ti)λ(t)=μ+∑ti&lt;tαe−β(t−ti) \lambda(t) = \mu + \sum\limits_{t_i<t}{\alpha e^{-\beta(t-t_i)}} où sont les heures d'arrivée des événements.t1,..tnt1,..tn t_1,..t_n La fonction de vraisemblance logarithmique est −tnμ+αβ∑(e−β(tn−ti)−1)+∑i&lt;jln(μ+αe−β(tj−ti))−tnμ+αβ∑(e−β(tn−ti)−1)+∑i&lt;jln⁡(μ+αe−β(tj−ti)) - t_n \mu + \frac{\alpha}{\beta} \sum{( e^{-\beta(t_n-t_i)}-1 )} + \sum\limits_{i<j}{\ln(\mu+\alpha e^{-\beta(t_j-t_i)})} …

2
Sommes-nous des fréquentistes vraiment juste des Bayésiens implicites / involontaires?
Pour un problème d'inférence donné, nous savons qu'une approche bayésienne diffère généralement à la fois dans sa forme et résulte d'une approche féquentiste. Les Frequentists (qui m'incluent généralement) soulignent souvent que leurs méthodes ne nécessitent pas de priorité et sont donc plus "pilotées par les données" que "pilotées par le …

2
Quel est le point de vue fréquentiste sur l'histoire du voltmètre?
Quel est le point de vue fréquentiste sur l'histoire du voltmètre et ses variations? L'idée sous-jacente est qu'une analyse statistique qui fait appel à des événements hypothétiques devrait être révisée si l'on apprenait plus tard que ces événements hypothétiques n'auraient pas pu se produire comme prévu. La version de l'histoire …




En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.