La régularisation par filet élastique est-elle toujours préférée à Lasso & Ridge, car elle semble résoudre les inconvénients de ces méthodes? Quelle est l'intuition et quel est le calcul derrière le filet élastique?
Comment les méthodes de régularisation des arêtes, LASSO et des filets élastiques se comparent-elles? Quels sont leurs avantages et inconvénients respectifs? Tout bon document technique ou note de cours serait également apprécié.
Je voudrais utiliser GLM et Elastic Net pour sélectionner ces fonctionnalités pertinentes + construire un modèle de régression linéaire (c'est-à-dire à la fois la prédiction et la compréhension, il serait donc préférable de se retrouver avec relativement peu de paramètres). La sortie est continue. C'est gènes pour 50 cas. J'ai …
J'utilise la fonction auto.arima () dans le package de prévision pour adapter les modèles ARMAX avec une variété de covariables. Cependant, j'ai souvent un grand nombre de variables à sélectionner et je me retrouve généralement avec un modèle final qui fonctionne avec un sous-ensemble d'entre elles. Je n'aime pas les …
Le papier net élastique original Zou & Hastie (2005) Régularisation et sélection des variables via le filet élastique introduit la fonction de perte nette élastique pour la régression linéaire (ici, je suppose que toutes les variables sont centrées et mises à l'échelle de la variance unitaire): mais appelé "filet élastique …
Je comprends le rôle que joue lambda dans une régression élastique-nette. Et je peux comprendre pourquoi on sélectionnerait lambda.min, la valeur de lambda qui minimise l'erreur de validation croisée. Ma question est: où dans la littérature statistique est-il recommandé d'utiliser lambda.1se, quelle est la valeur de lambda qui minimise l'erreur …
Certaines fonctions de pénalité et approximations sont bien étudiées, comme le LASSO ( L1L1L_1 ) et le Ridge ( L2L2L_2 ) et comment elles se comparent en régression. ∑∥βj∥γ∑‖βj‖γ\sum \|\beta_{j}\|^{\gamma}γ=1γ=1\gamma = 1γ=2γ=2\gamma = 2 Wenjiang [ 1 ] a comparé la pénalité Bridge quand γ≥1γ≥1\gamma \geq 1 au LASSO, mais …
Intro: J'ai un ensemble de données avec un problème classique "grand p, petit n". Le nombre d'échantillons disponibles n = 150 tandis que le nombre de prédicteurs possibles p = 400. Le résultat est une variable continue. Je veux trouver les descripteurs les plus "importants", c'est-à-dire ceux qui sont les …
J'effectue une régression logistique net élastique sur un ensemble de données de soins de santé en utilisant le glmnetpackage dans R en sélectionnant les valeurs lambda sur une grille de de 0 à 1. Mon code abrégé est ci-dessous:αα\alpha alphalist <- seq(0,1,by=0.1) elasticnet <- lapply(alphalist, function(a){ cv.glmnet(x, y, alpha=a, family="binomial", …
Je suis vraiment intéressé par la procédure du filet élastique pour la rétraction / sélection des prédicteurs. Cela semble très puissant. Mais du point de vue scientifique, je ne sais pas quoi faire une fois que j'ai obtenu les coefficients. À quelle question réponds-je? Ce sont les variables qui influencent …
La question Que conclure de ce graphique du lasso (glmnet) montre des chemins de solution pour l'estimateur du lasso qui ne sont pas monotones. C'est-à-dire que certains des coefficients augmentent en valeur absolue avant de rétrécir. J'ai appliqué ces modèles à plusieurs types d'ensembles de données et je n'ai jamais …
Je connais les avantages de la régularisation lors de la construction de modèles prédictifs (biais vs variance, prévention du sur-ajustement). Mais, je me demande si c'est une bonne idée de faire aussi de la régularisation (lasso, crête, filet élastique) lorsque le but principal du modèle de régression est l'inférence sur …
Il est bien connu que la régression linéaire avec une pénalité de équivaut à trouver l'estimation MAP donnée un a priori gaussien sur les coefficients. De même, l'utilisation d'une pénalité équivaut à l'utilisation d'une distribution de Laplace comme a priori.l2l2l^2l1l1l^1 Il n'est pas rare d'utiliser une combinaison pondérée de régularisation …
J'essaie d'identifier le meilleur modèle pour prédire les prix des automobiles, en utilisant les prix et les fonctionnalités disponibles sur les sites de petites annonces automobiles. Pour cela, j'ai utilisé quelques modèles de la bibliothèque scikit-learn et des modèles de réseaux neuronaux de pybrain et de neurolab. L'approche que j'ai …
J'ai un ensemble de 150 fonctionnalités, et beaucoup d'entre elles sont fortement corrélées les unes aux autres. Mon objectif est de prédire la valeur d'une variable discrète, dont la plage est 1-8 . La taille de mon échantillon est de 550 et j'utilise une validation croisée 10 fois . AFAIK, …
We use cookies and other tracking technologies to improve your browsing experience on our website,
to show you personalized content and targeted ads, to analyze our website traffic,
and to understand where our visitors are coming from.
By continuing, you consent to our use of cookies and other tracking technologies and
affirm you're at least 16 years old or have consent from a parent or guardian.