Questions marquées «sequence»

Pour les défis impliquant une sorte de séquence.

6
Nouvel ordre n ° 3: 5 8 6
Introduction (peut être ignoré) Mettre tous les nombres positifs dans son ordre régulier (1, 2, 3, ...) est un peu ennuyeux, n'est-ce pas? Voici donc une série de défis autour des permutations (remaniements) de tous les nombres positifs. Il s'agit du troisième défi de cette série (liens vers les premier …


4
Nombre d' alcanes
Étant donné un nombre positif , trouver le nombre d' alcanes avec n atomes de carbone, en ignorant les stéréoisomères ; ou de manière équivalente, le nombre d'arbres sans étiquette avec n nœuds, de sorte que chaque nœud a un degré ≤ 4 .nnnnnnnnn≤4≤4\le 4 Il s'agit de la séquence …


21
Combien de trois?
Dans cette tâche, votre code recevra un entier nnn en entrée. Votre code doit ensuite afficher le plus grand nombre de multiples de 333 pouvant être concaténés (en base 101010 ) pour former 3n3n3n (sans zéros non significatifs). Par exemple, si vous avez reçu 260422604226042 en entrée, 26042×3=7812626042×3=7812626042\times3=78126 et 781267812678126 …


10
Anciennement les nombres composites
Définition de séquence Construisez une séquence d'entiers positifs a(n)comme suit: a(0) = 4 Chaque terme a(n), autre que le premier, est le plus petit nombre qui satisfait aux conditions suivantes: a) a(n)est un nombre composite, b) a(n) > a(n-1), et c) a(n) + a(k) + 1est un nombre composite pour …


15
Levenshtein distance & OEIS (flics)
Ceci est le poste Cop. Le billet Robber est ici . Votre tâche consiste à prendre un entier N et à sortir le Nième chiffre dans la séquence OEIS A002942 . La séquence se compose des nombres carrés écrits à l'envers: 1, 4, 9, 61, 52, 63, 94, 46, 18, …

16
Principaux pouvoirs des premiers
Aux fins de ce défi, une puissance première d'un nombre premier (PPP) est définie comme un nombre qui peut être défini comme un nombre premier à la puissance d'un nombre premier. Par exemple, 9 est un PPP car il peut être représenté par 3 ^ 2. 81 d'autre part n'est …

15
Allez-vous en! No-1's Here!
Je jouais avec quelques chiffres et j'ai trouvé une séquence qui, bien sûr, est sur OEIS. C'est A005823 : Nombres dont l'expansion ternaire ne contient pas de 1 . Ça va: a (2n) = 3 * a (n) +2 a (2n + 1) = 3 * a (n + 1) …

24
Additionner les rangées du triangle concaténé
Considérez le triangle suivant. 1 23 456 7891 01112 131415 1617181 92021222 324252627 2829303132 33343536373 839404142434 4454647484950 51525354555657 585960616263646 5666768697071727 37475767778798081 Comme vous l'avez probablement remarqué, la première ligne est de longueur 1, et chaque ligne par la suite est 1 chiffre plus longue que la précédente et qu'elle contient …

11
Trouver la tangente de la somme des tangentes inverses
Contexte On peut montrer que pour tout entier k >= 0, f(k) = tan(atan(0) + atan(1) + atan(2) + ... + atan(k))est un nombre rationnel. Objectif Écrivez un programme ou une fonction complète qui, lorsqu'elle est donnée k >= 0, sort f(k)en une seule fraction réduite (le numérateur et le …


3
Miller-Rabin Strong Pseudoprimes
Étant donné un entier non négatif N, sortez le plus petit entier positif impair qui est un pseudoprime fort à toutes les premières Nbases premières. Il s'agit de la séquence OEIS A014233 . Cas de test (un index) 1 2047 2 1373653 3 25326001 4 3215031751 5 2152302898747 6 3474749660383 …

En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.