Tracer et interpréter la régression logistique ordinale


19

J'ai une variable dépendante ordinale, la facilité, qui varie de 1 (pas facile) à 5 (très facile). L'augmentation des valeurs des facteurs indépendants est associée à une cote de facilité accrue.

Deux de mes variables indépendantes ( condAet condB) sont catégoriques, chacune avec 2 niveaux, et 2 ( abilityA, abilityB) sont continues.

J'utilise le paquet ordinal dans R, où il utilise ce que je crois être

logit(p(Ouig))=lnp(Ouig)p(Oui>g)=β0g-(β1X1++βpXp)(g=1,,k-1)

(d'après la réponse de @ caracal ici )

J'ai appris cela de façon indépendante et j'apprécierais toute aide possible car je suis toujours aux prises avec. En plus des didacticiels accompagnant le package ordinal, j'ai également trouvé les éléments suivants utiles:

Mais j'essaie d'interpréter les résultats, de rassembler les différentes ressources et je suis coincé.

  1. J'ai lu de nombreuses explications différentes, à la fois abstraites et appliquées, mais j'ai toujours du mal à comprendre ce que cela signifie de dire:

    Avec une augmentation de 1 unité de condB (c.-à-d. Passant d'un niveau au prochain du prédicteur catégorique), les probabilités prédites d'observer Y = 5 contre Y = 1 à 4 (ainsi que les probabilités prédites de Y = 4 contre Y = 1 à 3) variation d'un facteur exp (bêta) qui, pour le diagramme, est exp (0,457) = 1,58.

    une. Est-ce différent pour les variables indépendantes catégoriques et continues?
    b. Une partie de ma difficulté peut être avec l'idée de cotes cumulatives et ces comparaisons. ... Est-il juste de dire que passer de condA = absent (niveau de référence) à condA = présent est 1,58 fois plus susceptible d'être évalué à un niveau de facilité plus élevé? Je suis presque sûr que ce n'est PAS correct, mais je ne sais pas comment l'exprimer correctement.

Graphiquement,
1. En implémentant le code dans ce post , je ne comprends pas pourquoi les valeurs de «probabilité» résultantes sont si grandes.
2. Le graphique de p (Y = g) dans ce post a le plus de sens pour moi ... avec une interprétation de la probabilité d'observer une catégorie particulière de Y à une valeur particulière de X. La raison pour laquelle j'essaie d'obtenir le graphique vise en premier lieu à mieux comprendre l'ensemble des résultats.

Voici la sortie de mon modèle:

m1c2 <- clmm (easiness ~ condA + condB + abilityA + abilityB + (1|content) + (1|ID), 
              data = d, na.action = na.omit)
summary(m1c2)
Cumulative Link Mixed Model fitted with the Laplace approximation

formula: 
easiness ~ illus2 + dx2 + abilEM_obli + valueEM_obli + (1 | content) +  (1 | ID)
data:    d

link  threshold nobs logLik  AIC    niter     max.grad
logit flexible  366  -468.44 956.88 729(3615) 4.36e-04
cond.H 
4.5e+01

Random effects:
 Groups  Name        Variance Std.Dev.
 ID      (Intercept) 2.90     1.70    
 content  (Intercept) 0.24     0.49    
Number of groups:  ID 92,  content 4 

Coefficients:
                Estimate Std. Error z value Pr(>|z|)    
condA              0.681      0.213    3.20   0.0014 ** 
condB              0.457      0.211    2.17   0.0303 *  
abilityA           1.148      0.255    4.51  6.5e-06 ***
abilityB           0.577      0.247    2.34   0.0195 *  

Threshold coefficients:
    Estimate Std. Error z value
1|2   -3.500      0.438   -7.99
2|3   -1.545      0.378   -4.08
3|4    0.193      0.366    0.53
4|5    2.121      0.385    5.50

4
+1, c'est agréable de voir une question aussi bien étudiée et formulée. Bienvenue sur CV.
gung - Rétablir Monica

Réponses:


En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.