Je reproduis un exemple de modèles généralisés, linéaires et mixtes . Mon MWE est ci-dessous:
Dilution <- c(1/128, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2, 1, 2, 4)
NoofPlates <- rep(x=5, times=10)
NoPositive <- c(0, 0, 2, 2, 3, 4, 5, 5, 5, 5)
Data <- data.frame(Dilution, NoofPlates, NoPositive)
fm1 <- glm(formula=NoPositive/NoofPlates~log(Dilution), family=binomial("logit"), data=Data)
summary(object=fm1)
Production
Call:
glm(formula = NoPositive/NoofPlates ~ log(Dilution), family = binomial("logit"),
data = Data)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.38326 -0.20019 0.00871 0.15607 0.48505
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.174 2.800 1.491 0.136
log(Dilution) 1.623 1.022 1.587 0.112
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 8.24241 on 9 degrees of freedom
Residual deviance: 0.64658 on 8 degrees of freedom
AIC: 6.8563
Number of Fisher Scoring iterations: 6
Code
anova(object=fm1, test="Chisq")
Production
Analysis of Deviance Table
Model: binomial, link: logit
Response: NoPositive/NoofPlates
Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 9 8.2424
log(Dilution) 1 7.5958 8 0.6466 0.00585 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Code
library(aod)
wald.test(b=coef(object=fm1), Sigma=vcov(object=fm1), Terms=2)
Production
Wald test:
----------
Chi-squared test:
X2 = 2.5, df = 1, P(> X2) = 0.11
Les coefficients estimés correspondent parfaitement aux résultats donnés dans le livre, mais les SE sont très éloignés. Sur la base du test LRT, la pente est significative, mais sur la base du coefficient de pente de Wald et Z-test est insignifiant. Je me demande si je manque quelque chose de basique. Merci d'avance pour votre aide.