Dériver numériquement les MLE de GLMM est difficile et, dans la pratique, je sais que nous ne devrions pas utiliser l'optimisation de la force brute (par exemple, en utilisant optim
une méthode simple). Mais pour mon propre but éducatif, je veux l'essayer pour m'assurer de bien comprendre le modèle (voir le code ci-dessous). J'ai trouvé que je reçois toujours des résultats incohérents glmer()
.
En particulier, même si j'utilise les MLE glmer
comme valeurs initiales, selon la fonction de vraisemblance que j'ai écrite ( negloglik
), ce ne sont pas des MLE ( opt1$value
est plus petit que opt2
). Je pense que deux raisons potentielles sont:
negloglik
n'est pas bien écrit pour qu'il y ait trop d'erreur numérique, et- la spécification du modèle est fausse. Pour la spécification du modèle, le modèle prévu est:
p <- function(x,a,b) exp(a+b*x)/(1+exp(a+b*x))
a <- -4 # fixed effect (intercept)
b <- 1 # fixed effect (slope)
s <- 1.5 # random effect (intercept)
N <- 8
x <- rep(2:6, each=20)
n <- length(x)
id <- 1:n
r <- rnorm(n, 0, s)
y <- rbinom(n, N, prob=p(x,a+r,b))
negloglik <- function(p, x, y, N){
a <- p[1]
b <- p[2]
s <- p[3]
Q <- 100 # Inf does not work well
L_i <- function(r,x,y){
dbinom(y, size=N, prob=p(x, a+r, b))*dnorm(r, 0, s)
}
-sum(log(apply(cbind(y,x), 1, function(x){
integrate(L_i,lower=-Q,upper=Q,x=x[2],y=x[1],rel.tol=1e-14)$value
})))
}
library(lme4)
(model <- glmer(cbind(y,N-y)~x+(1|id),family=binomial))
opt0 <- optim(c(fixef(model), sqrt(VarCorr(model)$id[1])), negloglik,
x=x, y=y, N=N, control=list(reltol=1e-50,maxit=10000))
opt1 <- negloglik(c(fixef(model), sqrt(VarCorr(model)$id[1])), x=x, y=y, N=N)
opt0$value # negative loglikelihood from optim
opt1 # negative loglikelihood using glmer generated parameters
-logLik(model)==opt1 # but these are substantially different...
Un exemple plus simple
Pour réduire le risque d'erreur d'erreur importante, j'ai créé un exemple plus simple.
y <- c(0, 3)
N <- c(8, 8)
id <- 1:length(y)
negloglik <- function(p, y, N){
a <- p[1]
s <- p[2]
Q <- 100 # Inf does not work well
L_i <- function(r,y){
dbinom(y, size=N, prob=exp(a+r)/(1+exp(a+r)))*dnorm(r,0,s)
}
-sum(log(sapply(y, function(x){
integrate(L_i,lower=-Q, upper=Q, y=x, rel.tol=1e-14)$value
})))
}
library(lme4)
(model <- glmer(cbind(y,N-y)~1+(1|id), family=binomial))
MLE.glmer <- c(fixef(model), sqrt(VarCorr(model)$id[1]))
opt0 <- optim(MLE.glmer, negloglik, y=y, N=N, control=list(reltol=1e-50,maxit=10000))
MLE.optim <- opt0$par
MLE.glmer # MLEs from glmer
MLE.optim # MLEs from optim
L_i <- function(r,y,N,a,s) dbinom(y,size=N,prob=exp(a+r)/(1+exp(a+r)))*dnorm(r,0,s)
L1 <- integrate(L_i,lower=-100, upper=100, y=y[1], N=N[1], a=MLE.glmer[1],
s=MLE.glmer[2], rel.tol=1e-10)$value
L2 <- integrate(L_i, lower=-100, upper=100, y=y[2], N=N[2], a=MLE.glmer[1],
s=MLE.glmer[2], rel.tol=1e-10)$value
(log(L1)+log(L2)) # loglikelihood (manual computation)
logLik(model) # loglikelihood from glmer
MLE.glmer
et MLE.optim
) en particulier pour l'effet aléatoire (voir le nouvel exemple), de sorte que ce n'est pas uniquement basé sur un facteur constant dans les valeurs de vraisemblance, je pense.
nAGQ
dans glmer
rend les MLE comparables. La précision par défaut de glmer
n'était pas très bonne.