Une méthode de régularisation pour les modèles de régression qui réduit les coefficients vers zéro, rendant certains d'entre eux égaux à zéro. Ainsi, le lasso effectue la sélection des fonctionnalités.
La régression LASSO réduit les coefficients vers zéro, permettant ainsi une sélection efficace du modèle. Je crois que dans mes données, il existe des interactions significatives entre les covariables nominales et continues. Cependant, les «principaux effets» du vrai modèle ne sont pas nécessairement significatifs (non nuls). Bien sûr, je ne …
Différents logiciels d'implémentation sont disponibles pour le lasso . Je sais que beaucoup de choses ont été discutées entre l'approche bayésienne et l'approche fréquentiste dans différents forums. Ma question est très spécifique au lasso - Quelles sont les différences ou les avantages du lasso baysian par rapport au lasso ordinaire …
On m'a donc posé une question sur laquelle les mesures centrales L1 (c.-à-d. Le lasso) et L2 (c.-à-d. La régression des crêtes) ont été estimées. La réponse est L1 = médiane et L2 = moyenne. Y a-t-il un type de raisonnement intuitif à cela? Ou faut-il le déterminer algébriquement? Si …
Certaines fonctions de pénalité et approximations sont bien étudiées, comme le LASSO ( L1L1L_1 ) et le Ridge ( L2L2L_2 ) et comment elles se comparent en régression. ∑∥βj∥γ∑‖βj‖γ\sum \|\beta_{j}\|^{\gamma}γ=1γ=1\gamma = 1γ=2γ=2\gamma = 2 Wenjiang [ 1 ] a comparé la pénalité Bridge quand γ≥1γ≥1\gamma \geq 1 au LASSO, mais …
Je veux mieux comprendre les packages R Larset Glmnet, qui sont utilisés pour résoudre le problème Lasso: (pour Variables et échantillons, voir www.stanford.edu/~hastie/Papers/glmnet.pdf à la page 3)m i n( β0β) ∈ Rp + 1[ 12 N∑i = 1N( yje- β0- xTjeβ)2+ λ | | β| |l1]mjen(β0β)∈Rp+1[12N∑je=1N(yje-β0-XjeTβ)2+λ||β||l1]min_{(\beta_0 \beta) \in R^{p+1}} \left[\frac{1}{2N}\sum_{i=1}^{N}(y_i-\beta_0-x_i^T\beta)^2 …
J'exécute une petite expérience avec la régression LASSO dans R pour tester s'il est capable de trouver une paire de prédicteurs parfaite. La paire est définie comme ceci: f1 + f2 = résultat Le résultat ici est un vecteur prédéterminé appelé «âge». F1 et f2 sont créés en prenant la …
loss=∥y−Xβ∥22+λ∥β∥1loss=‖y−Xβ‖22+λ‖β‖1 {\rm loss} = \| y - X \beta \|_2^2 + \lambda \| \beta \|_1 exp(−λ∥β∥1)exp(−λ‖β‖1) \exp(-\lambda \| \beta \|_1 ) λλ\lambda Considérons que du point de vue bayésien, nous pouvons calculer la probabilité postérieure que, disons, les estimations de paramètres non nuls se trouvent dans une collection d'intervalles donnée …
J'ai une question concernant la nécessité d'utiliser des méthodes de sélection d'entités (forêts aléatoires, valeur d'importance des caractéristiques ou méthodes de sélection d'entités univariées, etc.) avant d'exécuter un algorithme d'apprentissage statistique. Nous savons que pour éviter le sur-ajustement, nous pouvons introduire une pénalité de régularisation sur les vecteurs de poids. …
La régression pénalisée L1 (alias lasso) est présentée en deux formulations. Soit les deux fonctions objectives Q1=12||Y−Xβ||22Q2=12||Y−Xβ||22+λ||β||1.Q1=12||Y−Xβ||22Q2=12||Y−Xβ||22+λ||β||1. Q_1 = \frac{1}{2}||Y - X\beta||_2^2 \\ Q_2 =\frac{1}{2}||Y - X\beta||_2^2 + \lambda ||\beta||_1. Alors les deux formulations différentes sont argminβQ1argminβQ1 \text{argmin}_\beta \; Q_1 sous réserve de ||β||1≤t,||β||1≤t, ||\beta||_1 \leq t, et, de façon …
J'utilise le package R pénalisé pour obtenir des estimations réduites des coefficients pour un ensemble de données où j'ai beaucoup de prédicteurs et peu de connaissances sur ceux qui sont importants. Après avoir choisi les paramètres de réglage L1 et L2 et que je suis satisfait de mes coefficients, existe-t-il …
Récemment, j'ai découvert que dans la littérature d'économétrie appliquée, lorsqu'il s'agit de problèmes de sélection de caractéristiques, il n'est pas rare d'effectuer LASSO suivi d'une régression OLS en utilisant les variables sélectionnées. Je me demandais comment qualifier la validité d'une telle procédure. Cela causera-t-il des problèmes tels que des variables …
Voici le tracé de glmnet avec alpha par défaut (1, donc lasso) en utilisant mtcarsl'ensemble de données dans R avec mpgcomme DV et d'autres comme variables prédictives. glmnet(as.matrix(mtcars[-1]), mtcars[,1]) Que pouvons-nous conclure de ce graphique concernant différentes variables, en particulier am, cylet wt(lignes rouges, noires et bleu clair)? Comment formulerions-nous …
Je suis vraiment intéressé par la procédure du filet élastique pour la rétraction / sélection des prédicteurs. Cela semble très puissant. Mais du point de vue scientifique, je ne sais pas quoi faire une fois que j'ai obtenu les coefficients. À quelle question réponds-je? Ce sont les variables qui influencent …
Les méthodes algorithmiques de sélection des variables par étapes tendent à sélectionner des modèles qui biaisent plus ou moins toutes les estimations dans les modèles de régression ( ββ\beta s et leurs SE, valeurs p , statistiques F , etc.), et sont à peu près aussi susceptibles d'exclure les vrais …
La question Que conclure de ce graphique du lasso (glmnet) montre des chemins de solution pour l'estimateur du lasso qui ne sont pas monotones. C'est-à-dire que certains des coefficients augmentent en valeur absolue avant de rétrécir. J'ai appliqué ces modèles à plusieurs types d'ensembles de données et je n'ai jamais …
We use cookies and other tracking technologies to improve your browsing experience on our website,
to show you personalized content and targeted ads, to analyze our website traffic,
and to understand where our visitors are coming from.
By continuing, you consent to our use of cookies and other tracking technologies and
affirm you're at least 16 years old or have consent from a parent or guardian.