Le test de Dunnett dans R renvoyant des valeurs différentes à chaque fois


13

J'utilise la bibliothèque R 'multcomp' ( http://cran.r-project.org/web/packages/multcomp/ ) pour calculer le test de Dunnett. J'utilise le script ci-dessous:

Group <- factor(c("A","A","B","B","B","C","C","C","D","D","D","E","E","F","F","F"))
Value <- c(5,5.09901951359278,4.69041575982343,4.58257569495584,4.79583152331272,5,5.09901951359278,4.24264068711928,5.09901951359278,5.19615242270663,4.58257569495584,6.16441400296898,6.85565460040104,7.68114574786861,7.07106781186548,6.48074069840786)
data <- data.frame(Group, Value)
aov <- aov(Value ~ Group, data)
summary(glht(aov, linfct=mcp(Group="Dunnett")))

Maintenant, si j'exécute ce script plusieurs fois dans la console R, j'obtiens à chaque fois des résultats très légèrement différents. Voici un exemple:

         Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Dunnett Contrasts


Fit: aov(formula = Value ~ Group, data = data)

Linear Hypotheses:
           Estimate Std. Error t value Pr(>|t|)   
B - A == 0 -0.35990    0.37009  -0.972  0.76545   
C - A == 0 -0.26896    0.37009  -0.727  0.90019   
D - A == 0 -0.09026    0.37009  -0.244  0.99894   
E - A == 0  1.46052    0.40541   3.603  0.01710 * 
F - A == 0  2.02814    0.37009   5.480  0.00104 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1
(Adjusted p values reported -- single-step method)

Et voici un autre:

         Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Dunnett Contrasts


Fit: aov(formula = Value ~ Group, data = data)

Linear Hypotheses:
           Estimate Std. Error t value Pr(>|t|)    
B - A == 0 -0.35990    0.37009  -0.972   0.7654    
C - A == 0 -0.26896    0.37009  -0.727   0.9001    
D - A == 0 -0.09026    0.37009  -0.244   0.9989    
E - A == 0  1.46052    0.40541   3.603   0.0173 *  
F - A == 0  2.02814    0.37009   5.480   <0.001 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1
(Adjusted p values reported -- single-step method)

Comme vous pouvez le voir, les deux résultats ci-dessus diffèrent très légèrement, mais il suffit de déplacer le groupe final (F) de deux étoiles à trois étoiles, ce que je trouve inquiétant.

J'ai plusieurs questions à ce sujet:

  1. Pourquoi cela arrive-t-il?! Sûrement, si vous mettez les mêmes données à chaque fois, vous devriez obtenir les mêmes données.
  2. Y a-t-il une sorte de nombre aléatoire utilisé quelque part dans le calcul de Dunnett?
  3. Cette légère variation à chaque fois est-elle réellement un problème?

Réponses:


7

Je réponds ensemble à vos deux premières questions par l'exemple.

library(multcomp)

Group <- factor(c("A","A","B","B","B","C","C","C","D","D","D","E","E","F","F","F"))
Value <- c(5,5.09901951359278,4.69041575982343,4.58257569495584,4.79583152331272,5,5.09901951359278,4.24264068711928,5.09901951359278,5.19615242270663,4.58257569495584,6.16441400296898,6.85565460040104,7.68114574786861,7.07106781186548,6.48074069840786)
data <- data.frame(Group, Value)

fit <- aov(Value ~ Group, data)

set.seed(20140123)
Dunnet <- glht(fit, linfct=mcp(Group="Dunnett"))
summary(Dunnet)

Résultats:

     Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Dunnett Contrasts


Fit: aov(formula = Value ~ Group, data = data)

Linear Hypotheses:
           Estimate Std. Error t value Pr(>|t|)   
B - A == 0 -0.35990    0.37009  -0.972  0.76536   
C - A == 0 -0.26896    0.37009  -0.727  0.90012   
D - A == 0 -0.09026    0.37009  -0.244  0.99895   
E - A == 0  1.46052    0.40541   3.603  0.01794 * 
F - A == 0  2.02814    0.37009   5.480  0.00112 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1
(Adjusted p values reported -- single-step method)

Exécutez à nouveau (sans définir la valeur de départ):

summary(Dunnet)

Différents résultats:

     Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Dunnett Contrasts


Fit: aov(formula = Value ~ Group, data = data)

Linear Hypotheses:
           Estimate Std. Error t value Pr(>|t|)   
B - A == 0 -0.35990    0.37009  -0.972  0.76535   
C - A == 0 -0.26896    0.37009  -0.727  0.90020   
D - A == 0 -0.09026    0.37009  -0.244  0.99895   
E - A == 0  1.46052    0.40541   3.603  0.01767 * 
F - A == 0  2.02814    0.37009   5.480  0.00105 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1
(Adjusted p values reported -- single-step method)

Exécutez à nouveau (avec une graine définie):

set.seed(20140123)
Dunnet <- glht(fit, linfct=mcp(Group="Dunnett"))
summary(Dunnet)

Mêmes résultats:

     Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Dunnett Contrasts


Fit: aov(formula = Value ~ Group, data = data)

Linear Hypotheses:
           Estimate Std. Error t value Pr(>|t|)   
B - A == 0 -0.35990    0.37009  -0.972  0.76536   
C - A == 0 -0.26896    0.37009  -0.727  0.90012   
D - A == 0 -0.09026    0.37009  -0.244  0.99895   
E - A == 0  1.46052    0.40541   3.603  0.01794 * 
F - A == 0  2.02814    0.37009   5.480  0.00112 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1
(Adjusted p values reported -- single-step method)

En définissant la graine avant chaque exécution, vous obtenez des résultats cohérents. Il apparaît donc qu'un nombre aléatoire est utilisé dans le calcul des valeurs de p.

unelphune


Merci beaucoup pour votre réponse. Je pense que vous avez raison de ne pas penser au nombre d'étoiles - les gens devraient quand même regarder la valeur P. Je pense que je devrai cependant mettre la valeur de départ à une valeur connue, car pour valider mon programme, les résultats doivent être reproductibles exactement. Encore une question - savez-vous pourquoi la graine aléatoire est utilisée?
user1578653

1
Voir la réponse écrite par @Aniko qui fournit une explication plus détaillée. Remarquez que j'ai utilisé la date d'aujourd'hui comme graine.
Ellis Valentiner

10

Vous avez raison, une génération de nombres aléatoires est impliquée et les calculs varient d'une exécution à l'autre. Le coupable n'est en fait pas la procédure de Dunnett, mais la distribution t à plusieurs variables requise pour l'ajustement en une seule étape.

Le code suivant montre un exemple de calcul P(X<0) avec un vecteur à 5 dimensions X avoir plusieurs variables T5 distribution avec corrélation échangeable:

> library(mvtnorm)
> cr2 <- matrix(rep(0.3, 25), nr=5); diag(cr2) <- 1
> cr2
     [,1] [,2] [,3] [,4] [,5]
[1,]  1.0  0.3  0.3  0.3  0.3
[2,]  0.3  1.0  0.3  0.3  0.3
[3,]  0.3  0.3  1.0  0.3  0.3
[4,]  0.3  0.3  0.3  1.0  0.3
[5,]  0.3  0.3  0.3  0.3  1.0
> b <- pmvt(lower=rep(-Inf,5), upper=rep(0,5), delta=rep(0,5), df=5, corr=cr2)
> a <- pmvt(lower=rep(-Inf,5), upper=rep(0,5), delta=rep(0,5), df=5, corr=cr2)
> all.equal(a,b)
[1] "Attributes: < Component 1: Mean relative difference: 0.1527122 >"
[2] "Mean relative difference: 0.0003698006"     

Si cela vous inquiète, appelez simplement set.seedavec n'importe quel argument avant le calcul pour le rendre exactement reproductible.

Soit dit en passant, il y a un accusé de réception et une quantification de l'erreur dans la sortie de glht:

> ss <- summary(glht(aov, linfct=mcp(Group="Dunnett")))
> attr(ss$test$pvalues, "error")
[1] 0.0006597562
En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.