Voici un exemple avec la fonction que aggregates()j'ai moi-même créée il y a quelque temps:
# simulates data
set.seed(666)
( dat <- data.frame(group=gl(3,6), level=factor(rep(c("A","B","C"), 6)), 
                    y=round(rnorm(18,10),1)) )
> dat
   group level    y
1      1     A 10.8
2      1     B 12.0
3      1     C  9.6
4      1     A 12.0
5      1     B  7.8
6      1     C 10.8
7      2     A  8.7
8      2     B  9.2
9      2     C  8.2
10     2     A 10.0
11     2     B 12.2
12     2     C  8.2
13     3     A 10.9
14     3     B  8.3
15     3     C 10.1
16     3     A  9.9
17     3     B 10.9
18     3     C 10.3
# aggregates() function
aggregates <- function(formula, data=NULL, FUNS){ 
    if(class(FUNS)=="list"){ 
        f <- function(x) sapply(FUNS, function(fun) fun(x)) 
    }else{f <- FUNS} 
    temp <- aggregate(formula, data, f) 
    out <- data.frame(temp[,-ncol(temp)], temp[,ncol(temp)]) 
    colnames(out)[1] <- colnames(temp)[1] 
return(out) 
} 
# example 
FUNS <- function(x) c(mean=round(mean(x),0), sd=round(sd(x), 0)) 
( ag <- aggregates(y~group:level, data=dat, FUNS=FUNS) ) 
Cela donne le résultat suivant:
> ag
  group level mean sd
1     1     A   11  1
2     2     A    9  1
3     3     A   10  1
4     1     B   10  3
5     2     B   11  2
6     3     B   10  2
7     1     C   10  1
8     2     C    8  0
9     3     C   10  0
Vous pouvez peut-être obtenir le même résultat à partir de la fonction R split ():
> with(dat, sapply( split(y, group:level), FUNS ) )
     1:A 1:B 1:C 2:A 2:B 2:C 3:A 3:B 3:C
mean  11  10  10   9  11   8  10  10  10
sd     1   3   1   1   2   0   1   2   0
Permettez-moi de revenir à la sortie de la aggregatesfonction. Vous pouvez le transformer en une belle table en utilisant reshape(), xtabs()et ftable():
rag <- reshape(ag, varying=list(3:4), direction="long", v.names="y") 
rag$time <- factor(rag$time) 
ft <- ftable(xtabs(y~group+level+time, data=rag)) 
attributes(ft)$col.vars <- list(c("mean","sd")) 
Cela donne:
> ft 
             mean sd
group level         
1     A        11  1
      B        10  3
      C        10  1
2     A         9  1
      B        11  2
      C         8  0
3     A        10  1
      B        10  2
      C        10  0
Beau, n'est ce pas? Vous pouvez exporter cette table vers un pdf avec la textplot()fonction du gplotspackage.
Voir ici pour les solutions des autres.