J'essaie simplement de recalculer avec dnorm () la log-vraisemblance fournie par la fonction logLik à partir d'un modèle lm (dans R).
Cela fonctionne (presque parfaitement) pour un grand nombre de données (par exemple n = 1000):
> n <- 1000
> x <- 1:n
> set.seed(1)
> y <- 10 + 2*x + rnorm(n, 0, 2)
> mod <- glm(y ~ x, family = gaussian)
> logLik(mod)
'log Lik.' -2145.562 (df=3)
> sigma <- sqrt(summary(mod)$dispersion)
> sum(log(dnorm(x = y, mean = predict(mod), sd = sigma)))
[1] -2145.563
> sum(log(dnorm(x = resid(mod), mean = 0, sd = sigma)))
[1] -2145.563
mais pour les petits ensembles de données, il existe des différences claires:
> n <- 5
> x <- 1:n
> set.seed(1)
> y <- 10 + 2*x + rnorm(n, 0, 2)
>
> mod <- glm(y ~ x, family = gaussian)
> logLik(mod)
'log Lik.' -8.915768 (df=3)
> sigma <- sqrt(summary(mod)$dispersion)
> sum(log(dnorm(x = y, mean = predict(mod), sd = sigma)))
[1] -9.192832
> sum(log(dnorm(x = resid(mod), mean = 0, sd = sigma)))
[1] -9.192832
En raison de l'effet de petit ensemble de données, je pensais que cela pourrait être dû aux différences d'estimation de la variance résiduelle entre lm et glm, mais l'utilisation de lm fournit le même résultat que glm:
> modlm <- lm(y ~ x)
> logLik(modlm)
'log Lik.' -8.915768 (df=3)
>
> sigma <- summary(modlm)$sigma
> sum(log(dnorm(x = y, mean = predict(modlm), sd = sigma)))
[1] -9.192832
> sum(log(dnorm(x = resid(modlm), mean = 0, sd = sigma)))
[1] -9.192832
Où ai-je tort?
stats:::logLik.glm
lm()
, vous utilisez au lieu de .