Comment puis-je échantillonner à partir d'une distribution de mélange, et en particulier d'un mélange de distributions normales dans R
? Par exemple, si je voulais échantillonner à partir de:
comment pourrais-je faire ça?
Comment puis-je échantillonner à partir d'une distribution de mélange, et en particulier d'un mélange de distributions normales dans R
? Par exemple, si je voulais échantillonner à partir de:
comment pourrais-je faire ça?
Réponses:
Il est recommandé d'éviter les for
boucles R
pour des raisons de performances. Une solution alternative qui exploite le fait rnorm
est vectorisée:
N <- 100000
components <- sample(1:3,prob=c(0.3,0.5,0.2),size=N,replace=TRUE)
mus <- c(0,10,3)
sds <- sqrt(c(1,1,0.1))
samples <- rnorm(n=N,mean=mus[components],sd=sds[components])
samples <- rnorm(N)*sds[components]+mus[components]
. Je trouve plus facile à lire :)
En général, l'un des moyens les plus simples d'échantillonner à partir d'une distribution de mélange est le suivant:
Étapes de l'algorithme
1) Générer une variable aléatoire
3) Répétez les étapes 1) et 2) jusqu'à ce que vous ayez la quantité désirée d'échantillons de la distribution du mélange
Maintenant, en utilisant l'algorithme général donné ci-dessus, vous pouvez échantillonner à partir de votre exemple de mélange de normales en utilisant le R
code suivant :
#The number of samples from the mixture distribution
N = 100000
#Sample N random uniforms U
U =runif(N)
#Variable to store the samples from the mixture distribution
rand.samples = rep(NA,N)
#Sampling from the mixture
for(i in 1:N){
if(U[i]<.3){
rand.samples[i] = rnorm(1,0,1)
}else if(U[i]<.8){
rand.samples[i] = rnorm(1,10,1)
}else{
rand.samples[i] = rnorm(1,3,.1)
}
}
#Density plot of the random samples
plot(density(rand.samples),main="Density Estimate of the Mixture Model")
#Plotting the true density as a sanity check
x = seq(-20,20,.1)
truth = .3*dnorm(x,0,1) + .5*dnorm(x,10,1) + .2*dnorm(x,3,.1)
plot(density(rand.samples),main="Density Estimate of the Mixture Model",ylim=c(0,.2),lwd=2)
lines(x,truth,col="red",lwd=2)
legend("topleft",c("True Density","Estimated Density"),col=c("red","black"),lwd=2)
Ce qui génère:
et comme vérification de santé mentale:
R
set.seed(8) # this makes the example reproducible
N = 1000 # this is how many data you want
probs = c(.3,.8) # these are *cumulative* probabilities; since they
# necessarily sum to 1, the last would be redundant
dists = runif(N) # here I'm generating random variates from a uniform
# to select the relevant distribution
# this is where the actual data are generated, it's just some if->then
# statements, followed by the normal distributions you were interested in
data = vector(length=N)
for(i in 1:N){
if(dists[i]<probs[1]){
data[i] = rnorm(1, mean=0, sd=1)
} else if(dists[i]<probs[2]){
data[i] = rnorm(1, mean=10, sd=1)
} else {
data[i] = rnorm(1, mean=3, sd=.1)
}
}
# here are a couple of ways of looking at the results
summary(data)
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# -3.2820 0.8443 3.1910 5.5350 10.0700 13.1600
plot(density(data))
ifelse()
déclaration, mais je devrai le découvrir plus tard. J'ai remplacé ce code avec une boucle.
R
findInterval()
cumsum()
mu
s
p
mix <- function(n,mu,s,p) { ii <- findInterval(runif(n),cumsum(p))+1; x <- rnorm(n,mean=mu[ii],sd=sqrt(s[ii])); return(x); }
findInterval()
commande auparavant, cependant, j'aime écrire du code ici aussi simplement que possible car je veux que ce soit un outil de compréhension plutôt que d'efficacité.
Déjà donné des réponses parfaites, donc pour ceux qui veulent y parvenir en Python, voici ma solution:
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
mu = [0, 10, 3]
sigma = [1, 1, 1]
p_i = [0.3, 0.5, 0.2]
n = 10000
x = []
for i in range(n):
z_i = np.argmax(np.random.multinomial(1, p_i))
x_i = np.random.normal(mu[z_i], sigma[z_i])
x.append(x_i)
def univariate_normal(x, mean, variance):
"""pdf of the univariate normal distribution."""
return ((1. / np.sqrt(2 * np.pi * variance)) *
np.exp(-(x - mean)**2 / (2 * variance)))
a = np.arange(-7, 18, 0.01)
y = p_i[0] * univariate_normal(a, mean=mu[0], variance=sigma[0]**2) + p_i[1] * univariate_normal(a, mean=mu[1], variance=sigma[0]**2)+ p_i[2] * univariate_normal(a, mean=mu[2], variance=sigma[0]**2)
fig, ax = plt.subplots(figsize=(8, 4))
ax.hist(x, bins=100, density=True)
ax.plot(a, y)