J'ai une question sur la façon de régler un problème de censure dans JAGS.
J'observe un mélange bivarié normal où les valeurs X ont une erreur de mesure. Je voudrais modéliser les véritables «moyens» sous-jacents des valeurs censurées observées.
Voici ce que j'ai maintenant:
for (i in 1:n){
x[i,1:2]~dmnorm(mu[z[i],1:2], tau[z[i],1:2,1:2])
z[i]~dcat(prob[ ])
}
Y a également une erreur de mesure. Ce que je veux faire, c'est quelque chose comme ça:
for (i in 1:n){
x_obs[i] ~ dnorm(x_true[i],prec_x)I(x_true[i],)
y_obs[i] ~ dnorm(y_true[i],prec_y)
c(x_true[i]:y_true[i])~dmnorm(mu[ z [ i ],1:2], tau[z[i],1:2,1:2])
z[i]~dcat(prob[ ])
}
#priors for measurement error
e_x~dunif(.1,.9)
prec_x<-1/pow(e_x,2)
e_y~dunif(2,4)
prec_y<-1/pow(e_y,2)
De toute évidence, la commande c n'est pas valide dans JAGS.
Merci d'avance.