Tracé cumulatif / cumulatif (ou «Visualisation d'une courbe de Lorenz»)


11

Je ne sais pas comment ces complots sont appelés et j'ai donc donné à cette question un titre stupide.

Disons que j'ai un ensemble de données ordonné comme suit

4253  4262  4270  4383  4394  4476  4635  ...

Chaque numéro correspond au nombre de publications qu'un certain utilisateur a contribué à un site Web. J'étudie empiriquement le phénomène "d'inégalité de participation" tel que défini ici .

Afin de le rendre facile à saisir, je voudrais produire un graphique qui permet au lecteur de déduire rapidement des déclarations telles que "10% des utilisateurs contribuent 50% des données". Cela devrait probablement ressembler à ce croquis de peinture certes assez moche:

entrez la description de l'image ici

Je n'ai aucune idée de comment cela s'appelle donc je ne sais pas où chercher. De plus, si quelqu'un avait une implémentation R, ce serait génial.


6
La question est très bien posée (et j'adore le sketch). Consultez ecdfen Run début. Le terme est «fonction de distribution cumulative empirique». Vous pourriez également être intéressé par les "diagrammes de probabilité" et les "diagrammes QQ": ce sont des versions de l'ECDF montrant les données sur différentes échelles (non linéaires).
whuber

7
Courbe de Lorenz: voir en.wikipedia.org/wiki/Lorenz_curve C'est facile à rechercher dans les cercles R.
Nick Cox

Je le sais ecdfet je l'ai déjà utilisé, mais de manière "classique", l'axe des x montre le nombre de publications et l'axe des y leur probabilité. Je ne sais pas comment faire quelque chose comme ci-dessus.
wnstnsmth

3
@whuber Je pense que "10% des utilisateurs fournissent 50% des données" est plus une question de courbe de Lorenz. Une courbe de Lorenz est un tracé PP.
Nick Cox

2
Jetez un œil au paquet ineq dans R pour cela.
Mesures

Réponses:


6

Si vous voulez le faire simplement avec les Rcommandes de base , les codes suivants peuvent vous aider.

Au début, vous lisez les données.

person<-rep(1:7)
data<-c(4253, 4262, 4270, 4383, 4394, 4476, 4635)

Ensuite, vous pouvez voir la contribution de chaque utilisateur.

plot(person,data)
lines(person,data)

entrez la description de l'image ici

Vous pouvez également voir combien les deux, trois, quatre, ..., sept premières personnes contribuent.

cdata<-cumsum(data)    
plot(person,cdata)
lines(person,cdata)

entrez la description de l'image ici

Enfin, vous pouvez obtenir votre tracé souhaité (en proportions dans les deux axes) par les commandes suivantes:

plot(person/max(person),cdata/max(cdata),xlab="Top-contributing users",ylab="Data",col="red")
lines(person/max(person),cdata/max(cdata),col="red")

entrez la description de l'image ici

J'ai étiqueté les axes comme vous le vouliez. Il peut vous donner une idée claire du pourcentage de données fournies par une certaine proportion de personnes.


3

J'ai trouvé un moyen de visualiser rapidement la courbe de Lorenz avec ggplot2, résultant en un graphique plus esthétique et plus facile à interpréter. Pour cette dernière raison, j'ai reproduit la courbe de Lorenz sur la ligne diagonale, ce qui donne une forme plus intuitive, si vous me le demandez. Il contient également des lignes d'annotation qui devraient faciliter l'explication de l'intrigue (par exemple "Les 5% des utilisateurs les plus contributeurs représentent 50% des données"). Attention: trouver le bon endroit pour la ligne d'annotation utilise une heuristique assez idiote et peut ne pas fonctionner avec un ensemble de données plus petit.

Courbe de Lorenz (modifiée)

Exemples de données:

data <- data.frame(lco = 
                     c(338L, 6317L, 79L, 36L, 3634L, 8633L, 3231L, 27L, 173L, 5934L, 
                       4476L, 1604L, 340L, 723L, 260L, 7008L, 7968L, 3854L, 4011L, 1596L, 
                       1428L, 587L, 1595L, 32L, 277L, 5201L, 133L, 407L, 676L, 1874L, 
                       1700L, 843L, 237L, 4270L, 2404L, 530L, 305L, 9344L, 720L, 1806L, 
                       35L, 790L, 1383L, 5522L, 178L, 75L, 6219L, 121L, 923L, 1123L, 
                       102L, 70L, 50L, 119L, 445L, 464L, 182L, 244L, 1358L, 7840L, 661L, 
                       70L, 132L, 634L, 4262L, 1872L, 345L, 11L, 28L, 284L, 626L, 1033L, 
                       26L, 798L, 13L, 480L, 44L, 339L, 259L, 312L, 262L, 67L, 1359L, 
                       1835L, 13L, 189L, 292L, 2152L, 215L, 39L, 1131L, 1323L, 700L, 
                       3271L, 1622L, 4669L, 125L, 281L, 277L, 232L, 1111L, 8669L, 7233L, 
                       9363L, 400L, 502L, 1425L, 904L, 2924L, 927L, 31L, 1132L, 200L, 
                       17L, 7602L, 12365L, 258L, 16L, 223L, 55L, 11L, 785L, 493L, 4L, 
                       1161L, 393L, 791L, 30L, 568L, 386L, 75L, 1882L, 674L, 29L, 4217L, 
                       332L, 103L, 332L, 30L, 168L, 277L, 176L, 49L, 19L, 76L, 144L, 
                       145L, 65L, 52L, 391L, 25L, 104L, 484L, 20L, 12L, 188L, 5677L, 
                       19L, 273L, 424L, 281L, 458L, 50L, 255L, 898L, 840L, 872L, 573L, 
                       874L, 8L, 35L, 235L, 22L, 229L, 158L, 59L, 147L, 544L, 24L, 325L, 
                       15L, 3L, 1531L, 1014L, 43L, 35L, 2176L, 934L, 253L, 69L, 784L, 
                       352L, 188L, 27L, 1516L, 322L, 1394L, 7686L, 13L, 812L, 349L, 
                       779L, 77L, 941L, 104L, 82L, 93L, 1206L, 24L, 6159L, 131L, 99L, 
                       1310L, 27L, 520L, 327L, 350L, 42L, 102L, 25L, 14L, 42L, 33L, 
                       469L, 177L, 119L, 64L, 75L, 190L, 82L, 82L, 473L, 51L, 9L, 49L, 
                       41L, 221L, 1778L, 4188L, 4L, 86L, 39L, 93L, 35L, 44L, 227L, 636L, 
                       589L, 332L, 22L, 15L, 50L, 147L, 32L, 134L, 133L, 629L, 168L, 
                       69L, 747L, 34L, 20L, 552L, 8L, 54L, 28L, 1437L, 83L, 3225L, 776L, 
                       784L, 247L, 33L, 40L, 368L, 104L, 420L, 357L, 9L, 164L, 7L, 227L, 
                       142L, 33L, 91L, 78L, 175L, 194L, 294L, 433L, 52L, 7L, 372L, 29L, 
                       220L, 371L, 375L, 233L, 12L, 35L, 795L, 35L, 43L, 50L, 57L, 32L, 
                       162L, 124L, 160L, 52L, 132L, 131L, 50L, 117L, 145L, 33L, 83L, 
                       33L, 123L, 43L, 27L, 91L, 25L, 2116L, 51L, 509L, 603L, 267L, 
                       10L, 10L, 51L, 6028L, 99L, 597L, 53L, 131L, 1084L, 1222L, 153L, 
                       70L, 746L, 437L, 82L, 299L, 1682L, 21L, 24L, 973L, 207L, 55L, 
                       116L, 47L, 48L, 149L, 100L, 690L, 129L, 80L, 1143L, 103L, 50L, 
                       242L, 708L, 316L, 83L, 61L, 15L, 203L, 435L, 474L, 47L, 718L, 
                       21L, 33L, 27L, 15L, 53L, 97L, 6L, 39L, 59L, 255L, 51L, 15L, 20L, 
                       514L, 74L, 20L, 319L, 14L, 14L, 45L, 36L, 625L, 5534L, 43L, 590L, 
                       43L, 29L, 233L, 135L, 174L, 20L, 335L, 106L, 230L, 64L, 3551L, 
                       524L, 72L, 44L, 16L, 98L, 37L, 62L, 390L, 83L, 28L, 3L, 63L, 
                       32L, 124L, 56L, 149L, 11L, 153L, 661L, 15L, 25L, 49L, 626L, 141L, 
                       38L, 23L, 123L, 530L, 47L, 6L, 18L, 222L, 391L, 71L, 75L, 234L, 
                       142L, 45L, 439L, 675L, 14L, 53L, 19L, 100L, 51L, 147L, 10L, 141L, 
                       979L, 97L, 330L, 112L, 71L, 4L, 9L, 124L, 141L, 145L, 302L, 122L, 
                       435L, 50L, 81L, 99L, 330L, 84L, 41L, 227L, 4L, 37L, 5L, 99L, 
                       210L, 7L, 183L, 67L, 98L, 157L, 96L, 150L, 22L, 288L, 391L, 188L, 
                       54L, 56L, 49L, 618L, 160L, 631L, 9L, 355L, 56L, 119L, 37L, 36L, 
                       153L, 110L, 126L, 335L, 121L, 80L, 113L, 62L, 97L, 22L, 72L, 
                       1742L, 1007L, 11L, 121L, 27L, 62L, 823L, 56L, 40L, 26L, 69L, 
                       120L, 516L, 11L, 146L, 245L, 174L, 1648L, 105L, 123L, 17L, 2565L, 
                       138L, 200L, 46L, 130L, 189L, 87L, 191L, 143L, 76L, 702L, 79L, 
                       67L, 166L, 3487L, 88L, 395L, 283L, 140L, 535L, 198L, 64L, 1033L, 
                       376L, 180L, 14L, 32L, 441L, 361L, 520L, 62L, 247L, 10L, 24L, 
                       721L, 176L, 164L, 33L, 44L, 12L, 30L, 13L, 157L, 122L, 161L, 
                       45L, 34L, 538L, 74L, 14L, 19L, 15L, 1714L, 437L, 16L, 12L, 130L, 
                       25L, 93L, 9L, 15L, 81L, 889L, 27L, 195L, 5L, 233L, 113L, 356L, 
                       51L, 146L, 6822L, 65L, 166L, 45L, 18L, 295L, 196L, 145L, 256L, 
                       14L, 8L, 89L, 32L, 20L, 239L, 68L, 63L, 21L, 102L, 158L, 1138L, 
                       48L, 113L, 144L, 83L, 93L, 3L, 1032L, 45L, 36L, 68L, 146L, 370L, 
                       25L, 10L, 290L, 858L, 19L, 17L, 64L, 42L, 38L, 711L, 144L, 58L, 
                       144L, 1736L, 188L, 38L, 58L, 91L, 255L, 58L, 307L, 4L, 9L, 60L, 
                       14L, 13L, 118L, 1549L, 108L, 483L, 34L, 1471L, 13L, 16L, 76L, 
                       163L, 147L, 75L, 520L, 4L, 59L, 73L, 32L, 24L, 656L, 16L, 2655L, 
                       38L, 20L, 1011L, 85L, 592L, 91L, 883L, 5174L, 42L, 17L, 88L, 
                       21L, 61L, 33L, 1726L, 46L, 387L, 920L, 120L, 134L, 72L, 144L, 
                       1603L, 646L, 45L, 282L, 56L, 19L, 41L, 69L, 151L, 632L, 47L, 
                       48L, 126L, 114L, 119L, 144L, 949L, 67L, 144L, 27L, 61L, 70L, 
                       287L, 64L, 323L, 27L, 149L, 1914L, 20L, 1077L, 21L, 70L, 59L, 
                       123L, 537L, 131L, 1226L, 2908L, 8L, 133L, 42L, 175L, 100L, 162L, 
                       494L, 414L, 2618L, 33L, 93L, 48L, 3676L, 553L, 705L, 58L, 268L, 
                       141L, 284L, 98L, 135L, 13L, 49L, 792L, 128L, 172L, 236L, 221L, 
                       596L, 35L, 241L, 10L, 193L, 189L, 26L, 27L, 47L, 100L, 398L, 
                       21L, 26L, 86L, 147L, 3639L, 161L, 60L, 106L, 111L, 42L, 11L, 
                       654L, 21L, 129L, 1152L, 224L, 49L, 12L, 22L, 73L, 207L, 165L, 
                       113L, 12L, 1224L, 177L, 6L, 390L, 2747L, 23L, 46L, 1166L, 805L, 
                       20L, 130L, 46L, 110L, 16L, 88L, 652L, 61L, 86L, 16L, 804L, 41L, 
                       4383L, 511L, 126L, 549L, 23L, 45L, 80L, 162L, 127L, 700L, 43L, 
                       147L, 102L, 84L, 67L, 57L, 30L, 55L, 274L, 314L, 847L, 203L, 
                       322L, 8350L, 101L, 10L, 122L, 54L, 120L, 10L, 22L, 327L, 234L, 
                       56L, 998L, 409L, 131L, 2163L, 81L, 19L, 6675L, 7L, 2182L, 1136L, 
                       71L, 15L, 286L, 133L, 132L, 37L, 144L, 28L, 392L, 870L, 312L, 
                       190L, 135L, 16L, 6L, 153L, 38L, 62L, 2710L, 36L, 61L, 37L, 88L, 
                       375L, 88L, 131L, 73L, 212L, 918L, 185L, 53L, 143L, 69L, 2231L, 
                       54L, 23L, 220L, 195L, 468L, 2009L, 364L, 54L, 277L, 1547L, 240L, 
                       1700L, 1533L, 374L, 363L, 35L, 97L, 19L, 87L, 67L, 22L, 267L, 
                       16L, 11L, 35L, 460L, 44L, 58L, 26L, 13L, 172L, 114L, 272L, 64L, 
                       254L, 49L, 440L, 329L, 48L, 93L, 10L, 70L, 17L, 120L, 5229L, 
                       118L, 133L, 43L, 2419L, 207L, 102L, 90L, 127L, 3939L, 14L, 5L, 
                       552L, 425L, 656L, 511L, 170L, 396L, 177L, 3680L, 111L, 21L, 320L, 
                       367L, 51L, 672L, 1675L, 59L, 91L, 281L, 113L, 19L, 37L, 65L, 
                       288L, 27L, 149L, 61L, 63L, 75L, 165L, 90L, 9L, 12L, 82L, 111L, 
                       157L))

Code:

# lorenz curve of user contribution
library(ineq)
library(ggplot2)
library(scales)
library(grid)
# compute lorenz curve
lcolc <- Lc(data$lco)
# bring lorenz curve in another format easily readable by ggplot2
# namely reverse the L column so that lorenz curve is mirrored on diagonal
# p stays p (the diagonal)
# Uprob contains the indices of the L's, but we need percentiles
lcdf <- data.frame(L = rev(1-lcolc$L), p = lcolc$p, Uprob = c(1:length(lcolc$L)/length(lcolc$L)))

# basic plot with the diagonal line and the L line
p <- ggplot(lcdf, aes(x = Uprob, y = L)) + geom_line(colour = hcl(h=15, l=65, c=100)) + geom_line(aes(x = p, y = p))
# compute annotation lines at 50 percent L (uses a heuristic)
index  <- which(lcdf$L >= 0.499 & lcdf$L <= 0.501)[1]

ypos <- lcdf$L[index]
yposs <- c(0,ypos)
xpos <- index/length(lcdf$L)
xposs <- c(0,xpos)
ypositions <- data.frame(x = xposs, y = c(ypos,ypos))
xpositions <- data.frame(x = c(xpos,xpos), y = yposs)
# add annotation line
p <- p + geom_line(data = ypositions, aes(x = x, y = y), 
                   linetype="dashed") + geom_line(data = xpositions, aes(x = x, y = y), 
                                                  linetype="dashed") 
# set axes and labels (namely insert custom breaks in scales)
p <- p + scale_x_continuous(breaks=c(0, xpos,0.25,0.5,0.75,1),
                            labels = percent_format()) + scale_y_continuous(
                                                                            labels = percent_format())
# add minimal theme
p <- p + theme_minimal() + xlab("Percentage of objects") + ylab("Percentage of events") 
# customize theme
p <- p + theme(plot.margin = unit(c(0.5,1,1,1), "cm"), 
               axis.title.x = element_text(vjust=-1),
               axis.title.y = element_text(angle=90, vjust=0),
               panel.grid.minor = element_blank(),
               plot.background = element_rect(fill = rgb(0.99,0.99,0.99), linetype=0)) 
# print plot
p

3
Dans la littérature, je sais que la convention majoritaire est de loin l'inverse de celle ici, c'est-à-dire d'échanger des axes pour que la courbe soit convexe vers le bas. L'inégalité est un mot-clé ici, en particulier pour trouver des travaux plus détaillés, en particulier pour résumer cette courbe, par exemple dans l'étude des revenus en économie.
Nick Cox

-2

Deux autres façons de le faire alors que je travaillais récemment à ce sujet pour les essais cliniques de vaccins:

1.Utilisez Hmisc Ecdf. Ceci est simple et le trace bien que peu difficile à comprendre les détails sur la modification des différents éléments du graphique.

2.Calculez la distribution cumulative, puis 1-cumulatif est le cumulatif inverse. Tracez l'inverse en utilisant ggplot2 en utilisant geom_step si vous aimez une fonction pas à pas dans le graphique. La fonction ci-dessous utiliserait ecdf de base r pour vous donner une distribution cumulative puis 1-cumulative:

     rcdf <- function (x) {
     cdf <- ecdf(x)
     y <- cdf(x)
    xrcdf <- 1-y
      }

dans le rcdf ci-dessus est une fonction définie par l'utilisateur définie en utilisant ecdf.


Mais non. La courbe de Lorenz n'est ni l'ecdf ni son complément. Les deux axes de la courbe de Lorenz sont tous deux des probabilités cumulatives; dans le cas de l'ecdf, un seul l'est.
Nick Cox

La réponse de @wnstnsmth donne un ensemble de données et un code. Si vous essayez votre code sur ses données, vous obtiendrez des objets très différents.
Nick Cox
En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.