Éditer
J'ai trouvé un document décrivant exactement la procédure dont j'ai besoin. La seule différence est que le papier interpole les données moyennes mensuelles au quotidien, tout en préservant les moyennes mensuelles. J'ai du mal à mettre en œuvre l'approche en R
. Tous les indices sont appréciés.
Original
Pour chaque semaine, j'ai les données de comptage suivantes (une valeur par semaine):
- Nombre de consultations de médecins
- Nombre de cas de grippe
Mon objectif est d'obtenir des données quotidiennes par interpolation (j'ai pensé aux splines linéaires ou tronquées). L'important est que je souhaite conserver la moyenne hebdomadaire, c'est-à-dire que la moyenne des données interpolées quotidiennes doit être égale à la valeur enregistrée de cette semaine. De plus, l'interpolation doit être fluide. Un problème qui pourrait survenir est qu'une certaine semaine compte moins de 7 jours (par exemple au début ou à la fin d'une année).
Je vous serais reconnaissant de me donner des conseils à ce sujet.
Merci beaucoup.
Voici un exemple d'ensemble de données pour l'année 1995 ( mis à jour ):
structure(list(daily.ts = structure(c(9131, 9132, 9133, 9134,
9135, 9136, 9137, 9138, 9139, 9140, 9141, 9142, 9143, 9144, 9145,
9146, 9147, 9148, 9149, 9150, 9151, 9152, 9153, 9154, 9155, 9156,
9157, 9158, 9159, 9160, 9161, 9162, 9163, 9164, 9165, 9166, 9167,
9168, 9169, 9170, 9171, 9172, 9173, 9174, 9175, 9176, 9177, 9178,
9179, 9180, 9181, 9182, 9183, 9184, 9185, 9186, 9187, 9188, 9189,
9190, 9191, 9192, 9193, 9194, 9195, 9196, 9197, 9198, 9199, 9200,
9201, 9202, 9203, 9204, 9205, 9206, 9207, 9208, 9209, 9210, 9211,
9212, 9213, 9214, 9215, 9216, 9217, 9218, 9219, 9220, 9221, 9222,
9223, 9224, 9225, 9226, 9227, 9228, 9229, 9230, 9231, 9232, 9233,
9234, 9235, 9236, 9237, 9238, 9239, 9240, 9241, 9242, 9243, 9244,
9245, 9246, 9247, 9248, 9249, 9250, 9251, 9252, 9253, 9254, 9255,
9256, 9257, 9258, 9259, 9260, 9261, 9262, 9263, 9264, 9265, 9266,
9267, 9268, 9269, 9270, 9271, 9272, 9273, 9274, 9275, 9276, 9277,
9278, 9279, 9280, 9281, 9282, 9283, 9284, 9285, 9286, 9287, 9288,
9289, 9290, 9291, 9292, 9293, 9294, 9295, 9296, 9297, 9298, 9299,
9300, 9301, 9302, 9303, 9304, 9305, 9306, 9307, 9308, 9309, 9310,
9311, 9312, 9313, 9314, 9315, 9316, 9317, 9318, 9319, 9320, 9321,
9322, 9323, 9324, 9325, 9326, 9327, 9328, 9329, 9330, 9331, 9332,
9333, 9334, 9335, 9336, 9337, 9338, 9339, 9340, 9341, 9342, 9343,
9344, 9345, 9346, 9347, 9348, 9349, 9350, 9351, 9352, 9353, 9354,
9355, 9356, 9357, 9358, 9359, 9360, 9361, 9362, 9363, 9364, 9365,
9366, 9367, 9368, 9369, 9370, 9371, 9372, 9373, 9374, 9375, 9376,
9377, 9378, 9379, 9380, 9381, 9382, 9383, 9384, 9385, 9386, 9387,
9388, 9389, 9390, 9391, 9392, 9393, 9394, 9395, 9396, 9397, 9398,
9399, 9400, 9401, 9402, 9403, 9404, 9405, 9406, 9407, 9408, 9409,
9410, 9411, 9412, 9413, 9414, 9415, 9416, 9417, 9418, 9419, 9420,
9421, 9422, 9423, 9424, 9425, 9426, 9427, 9428, 9429, 9430, 9431,
9432, 9433, 9434, 9435, 9436, 9437, 9438, 9439, 9440, 9441, 9442,
9443, 9444, 9445, 9446, 9447, 9448, 9449, 9450, 9451, 9452, 9453,
9454, 9455, 9456, 9457, 9458, 9459, 9460, 9461, 9462, 9463, 9464,
9465, 9466, 9467, 9468, 9469, 9470, 9471, 9472, 9473, 9474, 9475,
9476, 9477, 9478, 9479, 9480, 9481, 9482, 9483, 9484, 9485, 9486,
9487, 9488, 9489, 9490, 9491, 9492, 9493, 9494, 9495), class = "Date"),
wdayno = c(0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L,
5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L,
6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L,
0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L,
1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L,
2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L,
3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L,
4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L,
5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L,
6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L,
0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L,
1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L,
2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L,
3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L,
4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L,
5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L,
6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L,
0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L,
1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L,
2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L,
3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L,
4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L,
5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L,
6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L,
0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L), month = c(1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9,
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12), year = c(1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995), yearday = 0:364,
no.influ.cases = c(NA, NA, NA, 168L, NA, NA, NA, NA, NA,
NA, 199L, NA, NA, NA, NA, NA, NA, 214L, NA, NA, NA, NA, NA,
NA, 230L, NA, NA, NA, NA, NA, NA, 267L, NA, NA, NA, NA, NA,
NA, 373L, NA, NA, NA, NA, NA, NA, 387L, NA, NA, NA, NA, NA,
NA, 443L, NA, NA, NA, NA, NA, NA, 579L, NA, NA, NA, NA, NA,
NA, 821L, NA, NA, NA, NA, NA, NA, 1229L, NA, NA, NA, NA,
NA, NA, 1014L, NA, NA, NA, NA, NA, NA, 831L, NA, NA, NA,
NA, NA, NA, 648L, NA, NA, NA, NA, NA, NA, 257L, NA, NA, NA,
NA, NA, NA, 203L, NA, NA, NA, NA, NA, NA, 137L, NA, NA, NA,
NA, NA, NA, 78L, NA, NA, NA, NA, NA, NA, 82L, NA, NA, NA,
NA, NA, NA, 69L, NA, NA, NA, NA, NA, NA, 45L, NA, NA, NA,
NA, NA, NA, 51L, NA, NA, NA, NA, NA, NA, 45L, NA, NA, NA,
NA, NA, NA, 63L, NA, NA, NA, NA, NA, NA, 55L, NA, NA, NA,
NA, NA, NA, 54L, NA, NA, NA, NA, NA, NA, 52L, NA, NA, NA,
NA, NA, NA, 27L, NA, NA, NA, NA, NA, NA, 24L, NA, NA, NA,
NA, NA, NA, 12L, NA, NA, NA, NA, NA, NA, 10L, NA, NA, NA,
NA, NA, NA, 22L, NA, NA, NA, NA, NA, NA, 42L, NA, NA, NA,
NA, NA, NA, 32L, NA, NA, NA, NA, NA, NA, 52L, NA, NA, NA,
NA, NA, NA, 82L, NA, NA, NA, NA, NA, NA, 95L, NA, NA, NA,
NA, NA, NA, 91L, NA, NA, NA, NA, NA, NA, 104L, NA, NA, NA,
NA, NA, NA, 143L, NA, NA, NA, NA, NA, NA, 114L, NA, NA, NA,
NA, NA, NA, 100L, NA, NA, NA, NA, NA, NA, 83L, NA, NA, NA,
NA, NA, NA, 113L, NA, NA, NA, NA, NA, NA, 145L, NA, NA, NA,
NA, NA, NA, 175L, NA, NA, NA, NA, NA, NA, 222L, NA, NA, NA,
NA, NA, NA, 258L, NA, NA, NA, NA, NA, NA, 384L, NA, NA, NA,
NA, NA, NA, 755L, NA, NA, NA, NA, NA, NA, 976L, NA, NA, NA,
NA, NA, NA, 879L, NA, NA, NA, NA), no.consultations = c(NA,
NA, NA, 15093L, NA, NA, NA, NA, NA, NA, 20336L, NA, NA, NA,
NA, NA, NA, 20777L, NA, NA, NA, NA, NA, NA, 21108L, NA, NA,
NA, NA, NA, NA, 20967L, NA, NA, NA, NA, NA, NA, 20753L, NA,
NA, NA, NA, NA, NA, 18782L, NA, NA, NA, NA, NA, NA, 19778L,
NA, NA, NA, NA, NA, NA, 19223L, NA, NA, NA, NA, NA, NA, 21188L,
NA, NA, NA, NA, NA, NA, 22172L, NA, NA, NA, NA, NA, NA, 21965L,
NA, NA, NA, NA, NA, NA, 21768L, NA, NA, NA, NA, NA, NA, 21277L,
NA, NA, NA, NA, NA, NA, 16383L, NA, NA, NA, NA, NA, NA, 15337L,
NA, NA, NA, NA, NA, NA, 19179L, NA, NA, NA, NA, NA, NA, 18705L,
NA, NA, NA, NA, NA, NA, 19623L, NA, NA, NA, NA, NA, NA, 19363L,
NA, NA, NA, NA, NA, NA, 16257L, NA, NA, NA, NA, NA, NA, 19219L,
NA, NA, NA, NA, NA, NA, 17048L, NA, NA, NA, NA, NA, NA, 19231L,
NA, NA, NA, NA, NA, NA, 20023L, NA, NA, NA, NA, NA, NA, 19331L,
NA, NA, NA, NA, NA, NA, 18995L, NA, NA, NA, NA, NA, NA, 16571L,
NA, NA, NA, NA, NA, NA, 15010L, NA, NA, NA, NA, NA, NA, 13714L,
NA, NA, NA, NA, NA, NA, 10451L, NA, NA, NA, NA, NA, NA, 14216L,
NA, NA, NA, NA, NA, NA, 16800L, NA, NA, NA, NA, NA, NA, 18305L,
NA, NA, NA, NA, NA, NA, 18911L, NA, NA, NA, NA, NA, NA, 17812L,
NA, NA, NA, NA, NA, NA, 18665L, NA, NA, NA, NA, NA, NA, 18977L,
NA, NA, NA, NA, NA, NA, 19512L, NA, NA, NA, NA, NA, NA, 17424L,
NA, NA, NA, NA, NA, NA, 14464L, NA, NA, NA, NA, NA, NA, 16383L,
NA, NA, NA, NA, NA, NA, 19916L, NA, NA, NA, NA, NA, NA, 18255L,
NA, NA, NA, NA, NA, NA, 20113L, NA, NA, NA, NA, NA, NA, 20084L,
NA, NA, NA, NA, NA, NA, 20196L, NA, NA, NA, NA, NA, NA, 20184L,
NA, NA, NA, NA, NA, NA, 20261L, NA, NA, NA, NA, NA, NA, 22246L,
NA, NA, NA, NA, NA, NA, 23030L, NA, NA, NA, NA, NA, NA, 10487L,
NA, NA, NA, NA)), .Names = c("daily.ts", "wdayno", "month",
"year", "yearday", "no.influ.cases", "no.consultations"), row.names = c(NA,
-365L), class = "data.frame")
R
ou d'autres packages statistiques (je n'ai pas accès à ArcGIS)? Sans implémentation concrètement disponible, je suis toujours bloqué, je le crains.
geoRglm
, à condition que vous ayez une très bonne compréhension de la variographie et du changement de support (qui est nécessaire pour développer le modèle de corrélation spatiale). Le manuel est publié par Springer Verlag sous le nom de Model-Based Geostatistics, Diggle & Ribeiro Jr.