Si et sont des variables aléatoires et et sont des constantes, alors
centrage est le cas spécial et , donc le centrage n'affecte pas la covariance.XYabCov(X+a,Y+b)=E[(X+a−E[X+a])(Y+b−E[Y+b])]=E[(X+a−E[X]−E[a])(Y+b−E[Y]−E[b])]=E[(X+a−E[X]−a)(Y+b−E[Y]−b)]=E[(X−E[X])(Y−E[Y])]=Cov(X,Y).
a=−E[X]b=−E[Y]
De plus, puisque la corrélation est définie comme
nous pouvons voir que
donc en particulier, la corrélation n'est pas affectée par le centrage non plus.Corr(X,Y)=Cov(X,Y)Var(X)Var(Y)−−−−−−−−−−−−√,
Corr(X+a,Y+b)=Cov(X+a,Y+b)Var(X+a)Var(Y+b)−−−−−−−−−−−−−−−−−−√=Cov(X,Y)Var(X)Var(Y)−−−−−−−−−−−−√,
C'était la version démographique de l'histoire. L'exemple de version est le même: si nous utilisons
comme estimation de la covariance entre et partir d'un échantillon apparié , puis
Covˆ(X,Y)=1n∑i=1n(Xi−1n∑j=1nXj)(Yi−1n∑j=1nYj)
XY(X1,Y1),…,(Xn,Yn)Covˆ(X+a,Y+b)=1n∑i=1n(Xi+a−1n∑j=1n(Xj+a))(Yi+b−1n∑j=1n(Yj+b))=1n∑i=1n(Xi+a−1n∑j=1nXj−nna)(Yi+b−1n∑j=1nYj−nnb)=1n∑i=1n(Xi−1n∑j=1nXj)(Yi−1n∑j=1nYj)=Covˆ(X,Y)
pour tout et .ab