J'essaie de décomposer une matrice de covariance basée sur un ensemble de données clairsemé / gappy. Je remarque que la somme de lambda (variance expliquée), telle que calculée avec svd
, est amplifiée avec des données de plus en plus pertinentes. Sans lacunes, svd
et eigen
obtenez les mêmes résultats.
Cela ne semble pas se produire avec une eigen
décomposition. J'avais tendance à utiliser svd
car les valeurs lambda sont toujours positives, mais cette tendance est inquiétante. Y a-t-il une sorte de correction qui doit être appliquée, ou devrais-je éviter svd
complètement pour un tel problème.
###Make complete and gappy data set
set.seed(1)
x <- 1:100
y <- 1:100
grd <- expand.grid(x=x, y=y)
#complete data
z <- matrix(runif(dim(grd)[1]), length(x), length(y))
image(x,y,z, col=rainbow(100))
#gappy data
zg <- replace(z, sample(seq(z), length(z)*0.5), NaN)
image(x,y,zg, col=rainbow(100))
###Covariance matrix decomposition
#complete data
C <- cov(z, use="pair")
E <- eigen(C)
S <- svd(C)
sum(E$values)
sum(S$d)
sum(diag(C))
#gappy data (50%)
Cg <- cov(zg, use="pair")
Eg <- eigen(Cg)
Sg <- svd(Cg)
sum(Eg$values)
sum(Sg$d)
sum(diag(Cg))
###Illustration of amplification of Lambda
set.seed(1)
frac <- seq(0,0.5,0.1)
E.lambda <- list()
S.lambda <- list()
for(i in seq(frac)){
zi <- z
NA.pos <- sample(seq(z), length(z)*frac[i])
if(length(NA.pos) > 0){
zi <- replace(z, NA.pos, NaN)
}
Ci <- cov(zi, use="pair")
E.lambda[[i]] <- eigen(Ci)$values
S.lambda[[i]] <- svd(Ci)$d
}
x11(width=10, height=5)
par(mfcol=c(1,2))
YLIM <- range(c(sapply(E.lambda, range), sapply(S.lambda, range)))
#eigen
for(i in seq(E.lambda)){
if(i == 1) plot(E.lambda[[i]], t="n", ylim=YLIM, ylab="lambda", xlab="", main="Eigen Decomposition")
lines(E.lambda[[i]], col=i, lty=1)
}
abline(h=0, col=8, lty=2)
legend("topright", legend=frac, lty=1, col=1:length(frac), title="fraction gaps")
#svd
for(i in seq(S.lambda)){
if(i == 1) plot(S.lambda[[i]], t="n", ylim=YLIM, ylab="lambda", xlab="", main="Singular Value Decomposition")
lines(S.lambda[[i]], col=i, lty=1)
}
abline(h=0, col=8, lty=2)
legend("topright", legend=frac, lty=1, col=1:length(frac), title="fraction gaps")
svd
sans la forme différente des valeurs propres. Le résultat donne évidemment plus d'importance aux valeurs propres de fin qu'il ne devrait.