If you think geometrically...
In the X-Y plane, curves of constant Z=Y/X are lines through the origin. (Y/X is the slope.) One can read off the value of Z from a line through the origin by finding its intersection with the line X=1. (If you've ever studied projective space: here X is the homogenizing variable, so looking at values on the slice X=1 is a relatively natural thing to do.)
Consider a small interval of Zs, (a,b). This interval can also be discussed on the line X=1 as the line segment from (1,a) to (1,b). The set of lines through the origin passing through this interval forms a solid triangle in the square (X,Y)∈U=[0,1]×[0,1], which is the region we're actually interested in. If 0≤a<b≤1, then the area of the triangle is 12(1−0)(b−a), so keeping the length of the interval constant and sliding it up and down the line X=1 (but not past 0 or 1), the area is the same, so the probability of picking an (X,Y) in the triangle is constant, so the probability of picking a Z in the interval is constant.
However, for b>1, the boundary of the region U turns away from the line X=1 and the triangle is truncated. If 1≤a<b, the projections down lines through the origin from (1,a) and (1,b) to the upper boundary of U are to the points (1/a,1) and (1/b,1). The resulting area of the triangle is 12(1a−1b)(1−0). From this we see the area is not uniform and as we slide (a,b) further and further to the right, the probability of selecting a point in the triangle decreases to zero.
Then the same algebra demonstrated in other answers finishes the problem. In particular, returning to the OP's last question, fZ(1/2) corresponds to a line that reaches X=1, but fZ(2) does not, so the desired symmetry does not hold.