La fonction R cv.glm (bibliothèque: boot) calcule l'erreur de prédiction de validation croisée K-fold estimée pour les modèles linéaires généralisés et renvoie delta. Est-il judicieux d'utiliser cette fonction pour une régression au lasso (bibliothèque: glmnet) et si oui, comment peut-elle être réalisée? La bibliothèque glmnet utilise une validation croisée pour obtenir le meilleur paramètre de rotation, mais je n'ai trouvé aucun exemple de validation croisée de l'équation glmnet finale.