L'abondance des valeurs de P en l'absence d'hypothèse


28

Je suis en épidémiologie. Je ne suis pas statisticien mais j'essaie de faire les analyses moi-même, bien que je rencontre souvent des difficultés. J'ai fait ma première analyse il y a environ 2 ans. Les valeurs de p ont été incluses partout dans mes analyses (j'ai simplement fait ce que faisaient les autres chercheurs), des tableaux descriptifs aux analyses de régression. Peu à peu, les statisticiens travaillant dans mon appartement m'ont persuadé de sauter toutes (!) Les valeurs de p, sauf d'où j'ai vraiment une hypothèse.

Le problème est que les valeurs de p sont abondantes dans les publications de recherche médicale. Il est classique d'inclure des valeurs de p sur beaucoup trop de lignes; les données descriptives des moyennes, médianes ou tout ce qui va généralement avec les valeurs de p (test t des élèves, khi carré, etc.).

J'ai récemment soumis un article à un journal et j'ai refusé (poliment) d'ajouter des valeurs de p à mon tableau descriptif "de base". Le document a finalement été rejeté.

Pour illustrer, voir la figure ci-dessous; il s'agit du tableau descriptif du dernier article publié dans une revue respectée de médecine interne .: entrez la description de l'image ici

Les statisticiens participent pour la plupart (sinon toujours) à l'examen de ces manuscrits. Donc, un profane comme moi s'attend à ne trouver aucune valeur p là où il n'y a pas d'hypothèse. Mais ils sont abondants, mais la raison de cela reste insaisissable pour moi. J'ai du mal à croire que c'est de l'ignorance.

Je me rends compte qu'il s'agit d'une question statistique limite. Mais je cherche la raison d'être de ce phénomène.


12
Une valeur de p sans hypothèse est intrinsèquement erronée. Que signifie une valeur p même si vous n'avez pas d'hypothèse?
jameselmore

3
Pouvez-vous peut-être donner quelques exemples de personnes utilisant des valeurs de p sans aucune hypothèse? Ce n'est pas clair.
amibe dit Réintégrer Monica

4
@amoeba "" Le problème est que les valeurs de p sont partout dans chaque revue médicale. Il est classique d'inclure des valeurs de p sur chaque ligne où il y a des moyennes, des médianes ou des proportions décrites. . L'hypothèse implicite est que chaque ligne compte.
Karl

2
Je soupçonne qu'une force majeure est que les valeurs p donnent une impression trompeuse de finalité à une revendication donnée. Les éditeurs de ces revues devraient aimer cela, car cela signifie qu'ils possèdent des informations qui seront précieuses dans un avenir prévisible. La culture simultanée de ne pas financer ou proposer des études de réplication aide également à minimiser la présence de résultats contradictoires controversés. Je me demande ce qui se passera si les gens finissent par réaliser que les informations qu'ils possèdent consistent principalement en une "activité inutile" (terme de @ glen_b). Même s'il y a des trucs utiles mélangés dans ... l'heuristique vous dit d'éviter.
Livide

1
[at] jameselmore: Je pose la même question; cela n'a aucun sens mais il est appliqué tous les jours. [at] amoeba: J'ai choisi au hasard l'une des revues que j'ai lues, j'ai lu le dernier article publié et j'ai trouvé ceci: onlinelibrary.wiley.com/doi/10.1111/joim.12230/full [at] Karl: exactement, merci. @Momo: J'ai fait un effort pour améliorer la formulation de la question. Je pense que c'est une question importante et j'apprécie votre suggestion. [at] Livid: merci pour ce commentaire. En effet, de nombreux chercheurs pourraient avoir mal compris le point entier des valeurs de p.
Adam Robinsson

Réponses:


29

De toute évidence, je n'ai pas besoin de vous dire ce qu'est une valeur p, ni pourquoi une dépendance excessive à leur égard est un problème; vous comprenez déjà assez bien ces choses.

Avec l'édition, vous avez deux pressions concurrentes.

La première - et celle à laquelle vous devriez faire appel à chaque occasion raisonnable - est de faire ce qui a du sens.

Le second, en fin de compte, est la nécessité de publier réellement. Il n'y a guère de gain si personne ne voit vos beaux efforts pour réformer la terrible pratique.

Donc, au lieu de l'éviter complètement:

  • le faire aussi peu d'activité inutile que vous pouvez vous en sortir qui le fait toujours publier

  • peut-être inclure une mention de cet article récent sur les méthodes de la nature [1] si vous pensez que cela vous aidera, ou peut-être mieux une ou plusieurs des autres références. Cela devrait au moins aider à établir qu'il y a une certaine opposition à la primauté des valeurs de p.

  • envisager d'autres revues, si une autre convenait

Est-ce la même chose dans d'autres disciplines?

Le problème de la surutilisation des valeurs de p se produit dans un certain nombre de disciplines (cela peut même être un problème quand il y a une hypothèse), mais il est beaucoup moins courant dans certaines que dans d'autres. Certaines disciplines ont des problèmes avec p-value-itis, et les problèmes qui en résultent peuvent éventuellement conduire à des réactions quelque peu exagérées [2] (et dans une moindre mesure, [1], et au moins à certains endroits, quelques-unes des autres). ainsi que).

Je pense qu'il y a une variété de raisons à cela, mais la dépendance excessive des valeurs p semble prendre son propre élan - il y a quelque chose à dire "significatif" et à rejeter un nul que les gens semblent trouver très attrayant; diverses disciplines (par exemple, voir [3] [4] [5] [6] [7] [8] [9] [10] [11]) luttent (avec des degrés de réussite variables) contre le problème de la dépendance excessive valeurs p (en particulier = 0,05) depuis de nombreuses années, et ont fait de nombreux types de suggestions différentes - pas toutes avec lesquelles je suis d'accord, mais j'inclus une variété de vues pour donner une idée des différentes choses que les gens ont dû dire.α

Certains d'entre eux préconisent de se concentrer sur les intervalles de confiance, certains préconisent de regarder les tailles d'effet, certains préconisent les méthodes bayésiennes, certaines valeurs p plus petites, d'autres simplement pour éviter d'utiliser des valeurs p de manière particulière, etc. Il y a beaucoup de points de vue différents sur ce qu'il faut faire à la place, mais entre eux, il y a beaucoup de matériel sur les problèmes liés à l'utilisation des valeurs de p, du moins de la manière la plus courante.

Voir ces références pour de nombreuses autres références tour à tour. Ceci n'est qu'un échantillon - plusieurs dizaines de références supplémentaires peuvent être trouvées. Quelques auteurs expliquent pourquoi ils pensent que les valeurs p sont répandues.

Certaines de ces références peuvent être utiles si vous voulez discuter du point avec un éditeur.

[1] Halsey LG, Curran-Everett D., Vowler SL & Drummond GB (2015),
"La valeur de P inconstante génère des résultats irréprochables",
Nature Methods 12 , 179–185 doi: 10.1038 / nmeth.3288
http: // www .nature.com / nmeth / journal / v12 / n3 / abs / nmeth.3288.html

[2] David Trafimow, D. et Marks, M. (2015),
Editorial,
Basic and Applied Social Psychology , 37 : 1–2
http://www.tandfonline.com/loi/hbas20
DOI: 10.1080 / 01973533.2015.1012991

[3] Cohen, J. (1990),
Choses que j'ai apprises (jusqu'à présent),
American Psychologist , 45 (12), 1304–1312.

[4] Cohen, J. (1994),
The earth is round (p <.05),
American Psychologist , 49 (12), 997–1003.

[5] Valen E. Johnson (2013),
Normes révisées pour les preuves statistiques PNAS , vol. 110, non. 48, 19313–19317 http://www.pnas.org/content/110/48/19313.full.pdf

[6] Kruschke JK (2010),
Ce qu'il faut croire: méthodes bayésiennes pour l'analyse des données,
Tendances des sciences cognitives 14 (7), 293-300

[7] Ioannidis, J. (2005)
Pourquoi la plupart des résultats de recherche publiés sont faux,
PLoS Med. Août; 2 (8): e124.
doi: 10.1371 / journal.pmed.0020124

[8] Gelman, A. (2013), P Values ​​and Statistical Practice,
Epidemiology Vol. 24 , n ° 1, 69-72 janvier

[9] Gelman, A. (2013),
«Le problème avec les valeurs de p est de savoir comment elles sont utilisées»,
(Discussion de «In defense of P-values», par Paul Murtaugh, for Ecology ), non publié
http: // citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.300.9053
http://www.stat.columbia.edu/~gelman/research/unpublished/murtaugh2.pdf

[10] Nuzzo R. (2014),
Erreurs statistiques: les valeurs de P, «l'étalon-or» de la validité statistique, ne sont pas aussi fiables que le supposent de nombreux scientifiques,
News and Comment,
Nature , Vol. 506 (13), 150-152

[11] Wagenmakers E, (2007)
Une solution pratique aux problèmes omniprésents des valeurs de p,
Psychonomic Bulletin & Review 14 (5), 779-804


7
+1. J'ai lu ce document Nature Methods [1] une autre semaine et je ne suis pas sûr de l'aimer beaucoup. Ils soutiennent essentiellement que les valeurs de p peuvent être très variables dans les tests de faible puissance (voir aussi "danse des valeurs de p" sur youtube) - quelque chose qui est bien sûr vrai et qui doit être souligné. Ils concluent que les valeurs de p sont "mauvaises" (le titre semble assez dur) et que les gens devraient utiliser des intervalles de confiance qui sont "bons". Mais bien sûr, les intervalles de confiance sont également très variables en basse puissance! La situation sur leur Figure 6 (à gauche) ne me semble pas beaucoup mieux que sur la Figure 2.
amibe dit Reinstate Monica

2
@amoeba Je ne dirai pas que je suis en désaccord avec vous - il y a beaucoup de choses avec lesquelles je suis en désaccord; néanmoins, certains points peuvent être utiles au PO. En fait, vous m'avez rappelé un changement que j'avais l'intention de faire mais que j'ai oublié.
Glen_b -Reinstate Monica

3
Oui, je suis néanmoins d'accord avec une utilité potentielle - en particulier parce que Nature Methods est suffisamment respectable pour que les gens puissent être convaincus par son "autorité". Je voulais juste mettre en garde OP contre tout ce qui est là pour acquis (leurs calculs sont corrects, je parle de conclusions / interprétation ici).
amibe dit Réintégrer Monica

1
Wilkinson et le Task Force on Statistical Inference, Statistical Methods in Psychology Journals, American Psychologist , Vol. 54, n ° 8, 594-604, 1999.
A. Donda

Glen_b, j'ai posté une question sur l'une des allégations des étrangers dans le document "Fickle P": stats.stackexchange.com/questions/250269 - apprécierait grandement votre compréhension.
amibe dit Réintégrer Monica

10

La valeur de p, ou plus généralement, le test de signification d'hypothèse nulle (NHST), tient lentement de moins en moins de valeur. À tel point que cela a commencé à être interdit dans les revues.

La plupart des gens ne comprennent pas ce que la valeur de p nous dit vraiment et pourquoi elle nous le dit, même si elle est utilisée partout.

P(Data|H0)P(H0|Data)

H0H0


1
J'ajouterais que P (H0 | données) n'a de sens que si H0 est significatif. Les études doivent être conçues et rapportées de manière à exclure au-delà du hasard d'autres explications sans intérêt pour les résultats (biais, abandons, différences de base). De plus, même un ECR aveugle parfait avec une taille d'effet substantielle vous indique seulement que quelque chose d' intéressant a été mesuré. Déterminer si vous avez mesuré la chose qui vous préoccupe est un autre problème passé sous silence souvent trouvé avec l'obsession de la valeur p.
Livide

8

Est-ce la même chose dans d'autres disciplines? Quelle est la raison de l'obsession des valeurs de p?

Greenwald et al. (1996) tentent de traiter cette question concernant la psychologie. En ce qui concerne également l'application du NHST aux différences de base, les éditeurs décideront (à tort ou à raison) que les différences de base "non significatives" ne peuvent pas expliquer les résultats, tandis que les différences "significatives" peuvent expliquer les résultats. Ceci est similaire à la "Raison 1" proposée par Greenwald et al. :

Pourquoi NHT reste-t-il populaire?

"Pourquoi le NHT ne succombe-t-il pas à la critique? Faute d'une meilleure réponse, il est tentant d'attribuer la persistance du NHT au manque de caractère des spécialistes du comportement. être comme la réticence d'un buveur à renoncer à l'habitude d'un cocktail avant le dîner ... "

Raison I: HT fournit un résultat dichotomique

"En raison de l'adoption généralisée de la convention qui p <.05 se traduit par" statistiquement significatif ", NHT peut être utilisé pour donner une réponse dichotomique (rejeter ou ne pas rejeter) à une question sur une hypothèse nulle. Cela peut souvent être considéré comme une réponse utile aux questions théoriques exprimées en termes de direction de prédiction plutôt qu'en termes de valeur attendue d'un paramètre ... "

Raison 2: Valeur p comme traduction significative en langage commun pour les statistiques de test

"Contrairement à tout ce qui peut être perçu si directement à partir des valeurs t, F ou r (avec leur df associé), la mesure de surprise de la valeur ap est simplement capturée par le nombre de zéros consécutifs à droite de sa virgule décimale ..."

Raison 3: La valeur p fournit une mesure de la confiance "dans la reproductibilité des rejets d'hypothèse nulle

"[U] ncomme une taille d'effet (ou un intervalle de confiance), la valeur ap résultant de la NHT est monotone liée à une estimation de la réplicabilité d'une constatation non nulle. seulement dans son sens NHT de répéter la conclusion rejet-non-rejet et non dans son sens d'estimation de proximité entre des estimations ponctuelles ou d'intervalle. "

Tailles d'effet et valeurs de p: Que faut-il signaler et que faut-il reproduire? ANTHONY G. GREENWALD, RICHARD GONZALEZ, RICHARD J. HARRIS ET DONALD GUTHRIE. Psychophysiologie, 33 (1996). 175-183. La presse de l'Universite de Cambridge. Imprimé aux USA. Copyright O 1996 Société de recherche psychophysiologique


merci pour ces commentaires importants, que je vais certainement utiliser pour discuter avec les examinateurs la prochaine fois.
Adam Robinsson

6

Les valeurs P donnent des informations sur les différences entre deux groupes de résultats ("traitement" vs "contrôle", "A" vs "B", etc.) qui échantillonnent à partir de deux populations. La nature de la différence est formalisée dans l'énoncé des hypothèses - par exemple "la moyenne de A est supérieure à la moyenne de B". Des valeurs de p faibles suggèrent que les différences ne sont pas dues à une variation aléatoire, tandis que des valeurs de p élevées suggèrent que les différences dans les deux échantillons ne peuvent pas être distinguées des différences qui pourraient résulter simplement d'une variation aléatoire. Ce qui est «faible» ou «élevé» pour une valeur de p a toujours été une question de convention et de goût plutôt qu'établi par une logique rigoureuse ou une analyse des preuves.

Une condition préalable à l'utilisation des valeurs de p est que les deux groupes de résultats soient vraiment comparables, à savoir que la seule source de différence entre eux est liée à la variable que vous évaluez. À titre d'exemple exagéré, imaginez que vous disposez de statistiques sur deux maladies sur deux périodes - A: mortalité due au choléra chez les hommes dans les prisons britanniques 1920-1930, et B: infection par le paludisme au Nigéria 1960-1970. Le calcul d'une valeur de p à partir de ces deux ensembles de données serait plutôt absurde. Maintenant, si A: mortalité due au choléra chez les hommes dans les prisons britanniques qui ne sont pas traités vs B: mortalité due au choléra chez les hommes dans les prisons britanniques traités avec réhydratation, alors vous avez la base d'une solide hypothèse statistique.

Le plus souvent, cela est accompli grâce à un plan d'expérimentation soigneux, ou à un plan d'enquête minutieux, ou à une collecte minutieuse des données historiques, etc. être des variances d'échantillon ou d'autres statistiques d'échantillon. Il est également possible de créer des déclarations d'hypothèses comparant les deux distributions d'échantillons dans leur ensemble, en utilisant la dominance stochastique. Ce sont rares.

La controverse sur les valeurs p est centrée sur «ce qui est vraiment significatif» pour la recherche? C'est là qu'interviennent les tailles d'effet. Fondamentalement, la taille d'effet est l'ampleur de la différence entre les deux groupes. Il est possible d'avoir une signification statistique élevée (faible valeur de p -> non due à une variation aléatoire) mais également une faible taille d'effet (très peu de différence d'amplitude). Lorsque les tailles d'effet sont très grandes, autoriser des valeurs de p quelque peu élevées peut être acceptable.

La plupart des disciplines s'orientent désormais très fortement vers la notification des tailles d'effet et la réduction ou la minimisation du rôle des valeurs de p. Ils encouragent également des statistiques plus descriptives sur les distributions d'échantillons. Certaines approches, y compris les statistiques bayésiennes, suppriment toutes les valeurs de p ensemble.


Ma réponse est condensée et simplifiée. Il existe de nombreux articles sur ce sujet que vous pouvez consulter pour plus de détails, de justifications et de détails, notamment:


@MerMeritology merci d'avoir fourni ces références importantes. Je vais les lire dès que possible!
Adam Robinsson

6

"Donc, un profane comme moi s'attend à ne trouver aucune valeur p là où il n'y a pas d'hypothèse."

Implicitement, le PO dit que dans le tableau spécifique qu'il présente, aucune hypothèse n'accompagne les valeurs de p rapportées. Juste pour dissiper cette petite confusion, il y a certainement des hypothèses nulles, mais elles sont plutôt ... indirectement mentionnées (pour l'économie d'espace, je présume).

La "valeur p" est une probabilité conditionnelle, par exemple, pour un test "à droite",

p-valP(Tt(S)H0)=1FT|H0(t(S)H0)

TFT|H0(tH0)TH0t(S)TTH0TH0H0

Ainsi, une valeur de p ne peut même pas être calculée s'il n'y a pas d'hypothèse nulle , et chaque fois que nous voyons une valeur de p rapportée, quelque part une hypothèse nulle se cache.

Dans le tableau présenté dans la question que nous lisons

"Tous les tests pour les différences entre les tertiles WHR ..."

L'hypothèse nulle est "cachée" dans cette phrase: c'est "Aucune différence entre les tertiles WHR", (quel que soit un "tertile WΗR") exprimée sous sa forme mathématique qui semble ici être une différence de deux grandeurs étant fixée égale à zéro.


Je suis d'accord qu'il pourrait y avoir des hypothèses derrière ces analyses. Cependant, ceux qui élaborent des lignes directrices pour les articles de recherche (par exemple, la déclaration STROBE) devraient aborder l'abondance des valeurs de p. Je pense qu'une valeur p devrait être réservée à l'hypothèse principale d'un article (qui est rarement plus d'un). Mais néanmoins, je ne peux pas dire que je suis en désaccord avec vous =)
Adam Robinsson

1
@AdamRobinsson Hmmm ... Je n'en suis pas si sûr. Une telle approche "réservée" augmenterait (encore plus) l'importance qu'un test de la valeur p a réellement pour parvenir à une conclusion. Pour moi, c'est juste un résultat de plus qui doit être combiné avec de nombreux autres aspects, résultats, informations hors échantillon, logique, etc. D'un autre côté, si les valeurs p sont dispersées partout, c'est il est plus facile de se rendre compte qu'ils ne sont pas le critère précis pour tirer des conclusions.
Alecos Papadopoulos

Alecos j'ai lu quelque chose de différent dans le tableau, qui se réfère aux tertiles WHR (c'est-à-dire le rapport taille-hanche) plutôt que WRT, tandis que les tertiles sont des valeurs qui divisent une distribution en 3 parties dans le même sens que les quartiles sont des valeurs qui se divisent en 4 parties et les déciles sont en dix parties.
Glen_b -Reinstate Monica

@Glen_b Merci, ce n'était qu'une faute de frappe de ma part. A corrigé.
Alecos Papadopoulos

2
Voir, par exemple, ici . Mais probablement pas ici .
Glen_b -Reinstate Monica

2

Je suis devenu curieux et j'ai lu l'exemple de l'OP: l' obésité abdominale augmente le risque de fracture de la hanche . Je ne suis pas chercheur médical et je ne lis normalement pas les articles de médecine.

p

pp

ppp

p

Il semble que la question se réfère spécifiquement à ces tableaux descriptifs. Dans l'affirmative, il s'agit d'une pratique étrange (mais surtout inoffensive?) Dans les revues médicales, survivant grâce à la tradition.


pn=43000


@amoeba J'ai sélectionné un article chez rando; c'était le dernier article publié en épidémiologie dans cette revue. Je suis sûr que si j'avais cherché un peu plus, j'aurais pu fournir un article avec beaucoup plus de valeurs p inutiles. Comme vous l'avez remarqué, il existe une p-valueitis, mais d'après vos réponses et les autres réponses ci-dessus et ci-dessous, il semble que la communauté des chercheurs y remédie.
Adam Robinsson

@Adam, j'aime votre question (+1) et la réponse de Glen_b (+1), mais si ce document "choisi au hasard" est représentatif, alors la plupart des points soulevés par Glen_b et la plupart des documents auxquels il a lié, ne s'appliquent pas ou ne se réfèrent pas à la situation de la recherche médicale dont vous parliez. S'il n'est pas représentatif, je ne peux bien sûr pas en juger.
amibe dit Réintégrer Monica

J'ai en effet reçu à plusieurs reprises une immense aide de vos réponses. J'ai fait le jugement en fonction de ma compréhension de ce problème. Je crois que toutes les réponses fournies sont utiles et elles répondent collectivement à la question.
Adam Robinsson

1

Le niveau d'examen statistique par les pairs n'est pas aussi élevé qu'on pourrait le penser d'après mon expérience. Pour tous les articles appliqués sur lesquels j'ai travaillé, tous les commentaires statistiques provenaient d'experts dans le domaine appliqué et non de statisticiens. Pour les "meilleures" revues, bien qu'il y ait un examen plus approfondi, il n'est pas rare de voir des résultats qui ont de graves défauts. Je pense que c'est en partie parce que le domaine des statistiques peut être difficile (comme le montrent les désaccords entre bon nombre de ses grands esprits).

Deuxièmement, les lecteurs d'un domaine s'attendent à voir les choses d'une certaine manière. Dans une expérience récente, j'ai tracé des probabilités à partir d'un modèle, mais cela a été abaissé parce que mon collaborateur a deviné correctement que ses lecteurs seraient plus à l'aise avec un barplot de données brutes. En somme, de nombreux lecteurs s'attendent à voir des valeurs de p à côté d'un tableau des caractéristiques de base.

Sans rapport avec votre question directe, mais peut-être pertinent: les valeurs de p sont utilisées dans presque tous les textes en utilisant des méthodes fréquentistes ou de vraisemblance. Les auteurs ont souvent apporté une contribution considérable et ont profondément réfléchi aux statistiques. Bien qu'abusés par les expérimentateurs, ils ont sûrement une place dans les statistiques.


merci pour ce commentaire. Je pourrais pousser votre déclaration encore plus loin; Je pense qu'une proportion incroyablement élevée des résultats publiés contient des failles statistiques pour diverses raisons. Mon superviseur dit souvent «le processus d'examen est basé sur un mot de gentleman». C'est assez drôle, je pense.
Adam Robinsson

1

Je dois lire souvent des articles médicaux et j'ai l'impression que le pendule semble osciller d'un extrême à l'autre, plutôt que de rester dans la zone centrale équilibrée.

L'approche suivante semble bien fonctionner. Si la valeur P est petite, la différence observée ne devrait pas être due au hasard uniquement. Nous devons donc examiner l’ampleur de la différence et décider si elle a une importance pratique. De très petites valeurs de P se produisent avec de grandes tailles d'échantillon, même avec de très petites différences qui peuvent ne pas avoir de pertinence pratique.

Ne pas inclure les valeurs de P dans le tableau des données de référence peut être désavantageux. Donc, si dans une étude il y a deux groupes avec des âges moyens de 54 et 59 ans, je veux savoir si cette différence peut être due au hasard. Si P est petit, je pense que cette différence de 5 ans dans 2 groupes peut affecter les résultats de l'étude. Si P n'est pas petit, je n'ai pas à répondre à cette question.

Le problème se produit si l'on se fie uniquement à la valeur P et ne vérifie pas l'ampleur de la différence (par exemple, une simple variation en pourcentage). Certains estiment que les valeurs de P devraient être totalement omises afin que seule la différence demeure et soit visible. Une solution équilibrée serait de mettre l'accent sur l'évaluation de ces deux éléments et non de simplement jeter la valeur P, qui a une signification limitée mais «significative». La taille de l'effet est également susceptible de corréler étroitement avec la valeur P (tout comme les intervalles de confiance) et il est également peu probable qu'elle déplace complètement les valeurs P du paysage statistique. Comme mentionné dans l'article suivant, il existe de nombreuses vertus du test d'hypothèse nulle à cause desquelles il reste populaire:

ANTHONY G. GREENWALD, RICHARD GONZALEZ, RICHARD J. HARRIS ET DONALD GUTHRIE Ampleur des effets et valeurs de p: que faut-il déclarer et reproduire? Psychophysiologie, 33 (1996). 175-183.

En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.