J'ai essayé de reproduire les résultats de l'option Stata robust
dans R. J'ai utilisé la rlm
commande du package MASS ainsi que la commande lmrob
du package "robustbase". Dans les deux cas, les résultats sont assez différents de l’option "robuste" de Stata. Quelqu'un peut-il suggérer quelque chose dans ce contexte?
Voici les résultats que j'ai obtenus lorsque j'ai exécuté l'option robuste dans Stata:
. reg yb7 buildsqb7 no_bed no_bath rain_harv swim_pl pr_terrace, robust
Linear regression Number of obs = 4451
F( 6, 4444) = 101.12
Prob > F = 0.0000
R-squared = 0.3682
Root MSE = .5721
------------------------------------------------------------------------------
| Robust
yb7 | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
buildsqb7 | .0046285 .0026486 1.75 0.081 -.0005639 .009821
no_bed | .3633841 .0684804 5.31 0.000 .2291284 .4976398
no_bath | .0832654 .0706737 1.18 0.239 -.0552904 .2218211
rain_harv | .3337906 .0395113 8.45 0.000 .2563289 .4112524
swim_pl | .1627587 .0601765 2.70 0.007 .0447829 .2807346
pr_terrace | .0032754 .0178881 0.18 0.855 -.0317941 .0383449
_cons | 13.68136 .0827174 165.40 0.000 13.51919 13.84353
Et voici ce que j’ai obtenu dans R avec l’option lmrob:
> modelb7<-lmrob(yb7~Buildsqb7+No_Bed+Rain_Harv+Swim_Pl+Gym+Pr_Terrace, data<-bang7)
> summary(modelb7)
Call:
lmrob(formula = yb7 ~ Buildsqb7 + No_Bed + Rain_Harv + Swim_Pl + Gym + Pr_Terrace,
data = data <- bang7)
\--> method = "MM"
Residuals:
Min 1Q Median 3Q Max
-51.03802 -0.12240 0.02088 0.18199 8.96699
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 12.648261 0.055078 229.641 <2e-16 ***
Buildsqb7 0.060857 0.002050 29.693 <2e-16 ***
No_Bed 0.005629 0.019797 0.284 0.7762
Rain_Harv 0.230816 0.018290 12.620 <2e-16 ***
Swim_Pl 0.065199 0.028121 2.319 0.0205 *
Gym 0.023024 0.014655 1.571 0.1162
Pr_Terrace 0.015045 0.013951 1.078 0.2809
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Robust residual standard error: 0.1678
Multiple R-squared: 0.8062, Adjusted R-squared: 0.8059
lmrob
n'est pas la même chose que reg y x, robust
. Google "Erreurs-types R compatibles avec l'hétéroscédasticité". Vous obtiendrez des pages vous expliquant comment utiliser les bibliothèques lmtest
et sandwich
.