Le principal problème avec les statistiques comme le modèle de CoxR2(décrit dans une autre réponse) est qu'il est très dépendant de la distribution de censure de vos données. D'autres choses naturelles que vous pourriez regarder, comme le rapport de vraisemblance au modèle nul, ont également ce problème. (C'est essentiellement parce que la contribution d'un point de données censuré à la probabilité est très différente de la contribution d'un point de données où l'événement est observé, car l'un d'eux provient d'un PDF et l'autre d'un CDF.) Divers chercheurs ont des moyens proposés pour contourner ce problème, mais ceux que j'ai vus exigent généralement que vous ayez un modèle de distribution de la censure ou quelque chose de tout aussi impraticable. Je n'ai pas examiné à quel point cette dépendance est mauvaise dans la pratique, donc si votre censure est assez légère, vous pouvez toujours examiner les statistiques basées sur le rapport de vraisemblance. Pour les modèles CART de survie,
Pour les modèles de survie génériques, une statistique fréquemment utilisée est l' indice c de Harrell , un analogue du de Kendall ou de l'AUC ROC pour les modèles de survie. Essentiellement, c est la proportion, sur toutes les instances où vous savez qu'une instance a connu un événement plus tard que l'autre, que le modèle se classe correctement. (En d'autres termes, pour qu'une paire d'instances soit incluse dans le dénominateur ici, au plus une peut être censurée, et elle doit être censurée après que l'autre a connu un événement.) L' index c dépend également de la distribution de la censure, mais selon Harrell, la dépendance est plus douce que pour les autres statistiques que j'ai mentionnées ci-dessus. Malheureusement, Harrell's cτest également moins sensible que les statistiques ci-dessus, donc vous ne voudrez peut-être pas choisir entre des modèles basés sur celui-ci si la différence entre eux est petite; il est plus utile comme indice interprétable des performances générales que pour comparer différents modèles.
(Enfin, bien sûr, si vous avez un objectif spécifique à l'esprit pour les modèles - c'est-à-dire, si vous savez quelle est votre fonction de perte de prédiction - vous pouvez toujours les évaluer en fonction de la fonction de perte! Mais je suppose que vous '' re pas si chanceux ...)
Pour une discussion plus approfondie des statistiques du rapport de vraisemblance et de Harrell's c , vous devriez consulter les excellentes stratégies de modélisation de la régression des manuels de Harrell . La section sur l'évaluation des modèles de survie est le §19.10, pp. 492-493. Je suis désolé, je ne peux pas vous donner une seule réponse définitive, mais je ne pense pas que ce soit un problème résolu!