J'essaie de recréer un exemple très simple de Gradient politique, à partir de son blog d'origine Andrej Karpathy . Dans cet article, vous trouverez un exemple avec CartPole et Policy Gradient avec une liste de poids et d'activation Softmax. Voici mon exemple recréé et très simple de gradient de politique CartPole, qui fonctionne parfaitement .
import gym
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import PolynomialFeatures
import copy
NUM_EPISODES = 4000
LEARNING_RATE = 0.000025
GAMMA = 0.99
# noinspection PyMethodMayBeStatic
class Agent:
def __init__(self):
self.poly = PolynomialFeatures(1)
self.w = np.random.rand(5, 2)
def policy(self, state):
z = state.dot(self.w)
exp = np.exp(z)
return exp/np.sum(exp)
def __softmax_grad(self, softmax):
s = softmax.reshape(-1,1)
return np.diagflat(s) - np.dot(s, s.T)
def grad(self, probs, action, state):
dsoftmax = self.__softmax_grad(probs)[action,:]
dlog = dsoftmax / probs[0,action]
grad = state.T.dot(dlog[None,:])
return grad
def update_with(self, grads, rewards):
for i in range(len(grads)):
# Loop through everything that happend in the episode
# and update towards the log policy gradient times **FUTURE** reward
total_grad_effect = 0
for t, r in enumerate(rewards[i:]):
total_grad_effect += r * (GAMMA ** r)
self.w += LEARNING_RATE * grads[i] * total_grad_effect
print("Grads update: " + str(np.sum(grads[i])))
def main(argv):
env = gym.make('CartPole-v0')
np.random.seed(1)
agent = Agent()
complete_scores = []
for e in range(NUM_EPISODES):
state = env.reset()[None, :]
state = agent.poly.fit_transform(state)
rewards = []
grads = []
score = 0
while True:
probs = agent.policy(state)
action_space = env.action_space.n
action = np.random.choice(action_space, p=probs[0])
next_state, reward, done,_ = env.step(action)
next_state = next_state[None,:]
next_state = agent.poly.fit_transform(next_state.reshape(1, 4))
grad = agent.grad(probs, action, state)
grads.append(grad)
rewards.append(reward)
score += reward
state = next_state
if done:
break
agent.update_with(grads, rewards)
complete_scores.append(score)
env.close()
plt.plot(np.arange(NUM_EPISODES),
complete_scores)
plt.savefig('image1.png')
if __name__ == '__main__':
main(None)
.
.
Question
J'essaie de faire, presque le même exemple mais avec l'activation Sigmoid (juste pour plus de simplicité). C'est tout ce que je dois faire. Basculez l'activation dans le modèle de softmax
vers sigmoid
. Ce qui devrait fonctionner à coup sûr (basé sur l'explication ci-dessous). Mais mon modèle Policy Gradient n'apprend rien et reste aléatoire. Toute suggestion?
import gym
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import PolynomialFeatures
NUM_EPISODES = 4000
LEARNING_RATE = 0.000025
GAMMA = 0.99
# noinspection PyMethodMayBeStatic
class Agent:
def __init__(self):
self.poly = PolynomialFeatures(1)
self.w = np.random.rand(5, 1) - 0.5
# Our policy that maps state to action parameterized by w
# noinspection PyShadowingNames
def policy(self, state):
z = np.sum(state.dot(self.w))
return self.sigmoid(z)
def sigmoid(self, x):
s = 1 / (1 + np.exp(-x))
return s
def sigmoid_grad(self, sig_x):
return sig_x * (1 - sig_x)
def grad(self, probs, action, state):
dsoftmax = self.sigmoid_grad(probs)
dlog = dsoftmax / probs
grad = state.T.dot(dlog)
grad = grad.reshape(5, 1)
return grad
def update_with(self, grads, rewards):
if len(grads) < 50:
return
for i in range(len(grads)):
# Loop through everything that happened in the episode
# and update towards the log policy gradient times **FUTURE** reward
total_grad_effect = 0
for t, r in enumerate(rewards[i:]):
total_grad_effect += r * (GAMMA ** r)
self.w += LEARNING_RATE * grads[i] * total_grad_effect
def main(argv):
env = gym.make('CartPole-v0')
np.random.seed(1)
agent = Agent()
complete_scores = []
for e in range(NUM_EPISODES):
state = env.reset()[None, :]
state = agent.poly.fit_transform(state)
rewards = []
grads = []
score = 0
while True:
probs = agent.policy(state)
action_space = env.action_space.n
action = np.random.choice(action_space, p=[1 - probs, probs])
next_state, reward, done, _ = env.step(action)
next_state = next_state[None, :]
next_state = agent.poly.fit_transform(next_state.reshape(1, 4))
grad = agent.grad(probs, action, state)
grads.append(grad)
rewards.append(reward)
score += reward
state = next_state
if done:
break
agent.update_with(grads, rewards)
complete_scores.append(score)
env.close()
plt.plot(np.arange(NUM_EPISODES),
complete_scores)
plt.savefig('image1.png')
if __name__ == '__main__':
main(None)
Tracer tout l'apprentissage reste aléatoire. Rien ne sert à régler les hyper paramètres. Sous l'image d'exemple.
Références :
1) Apprentissage par renforcement profond: Pong des pixels
2) Une introduction aux gradients politiques avec Cartpole et Doom
3) Dérivation des gradients de politique et mise en œuvre de RENFORCEMENT
4) Astuce d'apprentissage automatique du jour (5): Astuce dérivée de journal 12
MISE À JOUR
On dirait que la réponse ci-dessous pourrait faire du travail à partir du graphique. Mais ce n'est pas une probabilité logarithmique, ni même un gradient de la politique. Et change tout l'objet de la politique de dégradé RL. Veuillez vérifier les références ci-dessus. Après l'image, nous avons la déclaration suivante.
J'ai besoin de prendre un dégradé de la fonction de journal de ma politique (qui est simplement des poids et une sigmoid
activation).
softmax
à signmoid
. C'est seulement une chose que je dois faire dans l'exemple ci-dessus.
[0, 1]
qui peut être interprétée comme une probabilité d'action positive (tourner à droite dans CartPole, par exemple). La probabilité d'une action négative (tourner à gauche) est alors 1 - sigmoid
. La somme de ces probabilités est 1. Oui, il s'agit d'un environnement de carte polaire standard.