Comment la plage dynamique peut-elle être plus grande que la profondeur de bits du capteur?


23

J'ai trouvé quelque chose qui m'a dérouté et j'ai donc pensé que la foule ici pourrait probablement répondre à celle-ci car elle est liée à la caméra et technique à la fois.

Comment la plage dynamique peut-elle être plus grande que la profondeur de bits du capteur?

Quelqu'un m'a envoyé les résultats DXOMark pour le Pentax K-5 qui affiche 14,1 EV de plage dynamique à son ISO le plus bas. Cependant, étant donné que le capteur est de 14 bits, cela ne correspond pas à mon intuition ... Il semble étrange qu'un appareil linéaire comme un capteur CMOS puisse capturer plus de DR qu'il ne possède de bits. Aurait-il une plage dynamique clairsemée, sautant les EV au milieu?


Le score DxO Mark pour la plage dynamique sous l' onglet d' impression est un score théorique interpolé , pas une mesure réelle. Veuillez lire la page sur leur site où les scores et comment ils sont calculés sont expliqués. Le DR sous l' onglet écran est un nombre plus réaliste pour un capteur 14 bits: 13,44 EV.
Michael C

Voir cette réponse et commentaires: photo.stackexchange.com/a/47512/15871
Michael C

Réponses:


16

Cambridge in Color a un très bon article à ce sujet. Si le capteur a un convertisseur A / N linéaire, la profondeur de bits limiterait la plage dynamique à 14 EV comme limite théorique. Cependant, s'il n'est pas linéaire, la profondeur de bits n'est pas nécessairement corrélée. D'après cela, je pense que nous pouvons déterminer que le capteur du K-5 n'a pas de convertisseur A / D linéaire.

Je peux dire, par expérience personnelle, que ce capteur a certainement une énorme plage dynamique. J'ai réussi à récupérer une image qui était proche de 8 arrêts sous-exposée sur le K-5.


Êtes-vous sûr que ce n'était pas ISO1600 et non ISO16000 que vous tourniez le reste du temps? Cela rendrait l'image un peu plus de 4 arrêts surexposée, pas 8, et corrélerait sans le fait que vous avez utilisé une compensation d'exposition de +4 en ACR. C'est toujours impressionnant, je veux juste m'assurer que les chiffres sont corrects.
Matt Grum

1
Oui, c'était 16000, j'ai une autre image de la séquence (et des sujets) avec la même ouverture et la même vitesse d'obturation pour référence (je la posterais, mais je ne suis pas chez moi pour l'obtenir). L'ACR ne permet qu'un réglage de 4 arrêts lors de l'exposition, j'ai donc également dû pousser la lumière de remplissage à 100 pour obtenir plus de détails. Hmm, je devrais peut-être mettre à jour l'article avec quelques étapes intermédiaires. J'ai vu un exemple similaire avec 10 arrêts délibérés et c'est ce qui a déclenché ma mise à niveau maintenant plutôt qu'en janvier. :)
John Cavan

+1, cet article de Cambridge en couleur est excellent. Il explique très bien la valeur des plus grands photosites ("puits" plus profonds) et comment ils affectent la plage dynamique. Il convient également de noter que la plupart des capteurs ne sont pas purement linéaires, la plupart ont une conv. A / N atténuée. courbe (courbe en S) lorsque vous atteignez les extrêmes de l'ombre et mettez en surbrillance. Dans RAW, un capteur numérique peut capturer un grand nombre de données qui peuvent ensuite être récupérées, comme votre article l'a démontré.
jrista

@jrista - Cambridge in Color a été l'un des premiers sites de photographie que j'ai visités lorsque j'ai commencé à prendre des photos reflex numériques. J'y reviens sans cesse, très bien écrit et facile à suivre.
John Cavan

@John: D'accord. CinC est un excellent site et très bien écrit à un niveau utile aux photographes débutants et expérimentés. C'est une chose difficile à faire.
jrista

7

Comment la plage dynamique peut-elle être plus grande que la profondeur de bits du capteur?

La plage dynamique est le logarithme du rapport entre les intensités les plus lumineuses et les plus sombres sur la partie linéaire de la courbe de sensibilité. Il peut y avoir d'autres définitions, mais en général, elle est dérivée du rapport de deux intensités, les propriétés physiques objectives de la scène. C'est un vrai nombre.

La profondeur de bits est le nombre de bits par canal utilisé pour quantifier la variable continue. Plus la profondeur de bits donne des nuances de gris plus distinctes entre les deux. Il s'agit uniquement de savoir comment une image est représentée dans la mémoire d'un ordinateur.

La plage dynamique reflète le contraste que le capteur peut enregistrer. La profondeur de bits reflète le nombre de couleurs distinctes auxquelles la caméra peut «donner des noms». Ou en combien de pièces l'appareil photo peut diviser la plage. Si une caméra était une règle, alors la plage dynamique serait la (logarithme de la) longueur de la règle, et la profondeur de bits serait le (logarithme de) le nombre de marques le long de son bord. Et vous pouvez diviser la longueur en autant de morceaux que vous le souhaitez. De même, la profondeur de bits ne doit pas nécessairement être la même que la plage dynamique.

Si la plage dynamique est S EV et la profondeur de bits est n , cela signifie que l'appareil photo peut enregistrer des scènes avec un contraste au moins aussi grand que

E_max / E_min = 2 ^ s

(En fait, un peu plus si vous utilisez également la partie non linéaire de la courbe de réponse du capteur). Et vous pouvez théoriquement distinguer

N = 2 ^ n

nuances de gris.

Je possède un appareil photo compact qui peut écrire en RAW 12 bits. Malgré la grande profondeur de bits, sa plage dynamique est très modeste. Vous pouvez imaginer une situation opposée, lorsque le capteur peut enregistrer une scène à contraste élevé, sans surexposition et sous-exposition, mais si la profondeur de bits est faible, cette scène sera représentée avec quelques couleurs intermédiaires.


+1, excellente réponse. Un conseil: je crois que le mot dont vous avez besoin à la place de "discrétiser" est "quantifier": Quantifier - verbe: Maths, Physique. restreindre (une quantité variable) à des valeurs discrètes plutôt qu'à un ensemble continu de valeurs.
jrista

Merci. Mon anglais est loin d'être parfait, mais il semble que dans le monde de l'informatique et des mathématiques, la discrétisation est plus appropriée lorsque l'espace continu est remplacé par un espace discret équivalent à des fins de calcul en.wiktionary.org/wiki/discretize (par exemple, un réel nombre avec une valeur à virgule flottante IEEE ou un entier). La discrétisation est une décision d'ingénierie logicielle. La variable quantifiée est pour moi une variable pour laquelle toutes les valeurs sont interdites sauf certaines. Donc, «quantifié» sonne comme une restriction physique pour moi. Mais vous avez peut-être raison.
sastanin

Techniquement parlant, un capteur «quantifie» la lumière en «seaux» spécifiques et physiquement limités. Si nous supposons une image RAW 12 bits, il y a 4096 «quanta» discrets dans lesquels vous pouvez «discrétiser». Alors que discrétiser signifierait que vous pourriez concilier un espace réel en un nombre variable d'espaces discrets, avec un capteur, l'espace discret est fixe et il n'y a que 4096 valeurs discrètes spécifiques dans lesquelles vous pouvez convertir l'espace analogique. C'est peut-être un point discutable, mais je pense que la quantification est plus applicable ici. ;)
jrista

D'ACCORD. Je suis convaincu.
sastanin

@jrista Pendant que nous parlons anglais, le mot que vous voulez est "discret", pas "discret".
coneslayer

2

Tout d'abord pour être clair, la plage dynamique a une relation inverse avec le bruit - un faible bruit (toutes choses égales par ailleurs) conduit à une plus grande plage dynamique. Le bruit provient principalement de l'électronique du capteur (bruit de lecture, bruit de courant d'obscurité), de la nature discrète de la lumière (bruit de photon / tir) et de la conversion de l'analogique au numérique (bruit de quantification).

Les scores de plage dynamique de la marque DXO sont basés sur la différence entre l'intensité lumineuse requise pour saturer le capteur et l'intensité lumineuse à laquelle le SNR frappe 1: 1 (c'est-à-dire le point auquel le signal est égal au bruit)

Vous vous attendez à ce qu'en l'absence de bruit de tir et de bruit de lecture, le DR d'un capteur avec une réponse linéaire soit égal à la profondeur de bits. Étant donné le score du K-5 en présence de ces sources de bruit, cela m'indique que le pipeline d'images a un degré de non-linéarité modéré (tous les capteurs ont une certaine non-linéarité inhérente), probablement conçu de cette façon pour augmenter la plage dynamique.

La non-linéarité permet d'échapper à la limite de profondeur de bits, ce que vous gagnez en dégradés dans les ombres que vous perdez ailleurs dans la courbe des tons (quoique probablement quelque part moins important). Un déjeuner gratuit n'existe pas!


En ce qui concerne le K-5, c'est la classe leader à faible sensibilité ISO, qui est principalement déterminée par le bruit de lecture. C'est vraiment génial de voir les fabricants porter leur attention sur ce domaine et cela mérite amplement l'attention, mais la plage dynamique à des sensibilités ISO plus élevées est dominée par le bruit des photons qui n'est contrecarré que par la capture de plus de lumière, donc les grands capteurs auront toujours un avantage ici . Comme certaines personnes tournent principalement en ISO 400 et plus, cela vaut la peine de garder cela à l'esprit!


Je suis d'accord, à ISO80, le K-5 est magnifique et se superpose bien avec un certain format moyen et plein cadre pour les plages ISO inférieures. Lorsque l'ISO commence à sauter, il commence à perdre la tête. Cependant, il parvient toujours à rester assez proche, c'est donc tout un exploit pour Sony (qui fabrique le capteur) et Pentax (qui l'a implémenté). Le D7000 a des caractéristiques très similaires étant donné qu'il s'agit d'une variante du même capteur et Nikon a fait un très bon travail sur leur mise en œuvre.
John Cavan

0

La "plage dynamique" (DR) n'est pas une caractéristique absolue.

La définition la plus grossière de DR est "le rapport entre les intensités de gris les plus brillantes et les plus foncées que le capteur peut enregistrer très bien".

Le DR d'un capteur numérique est dérivé de deux mesures:

  1. intensité d'écrêtage [pour le canal le plus sensible] à une température de couleur donnée (DxO utilise très probablement D65);
  2. intensité qui produit une quantité limite de bruit (c.-à-d. s'il est plus sombre, le bruit est inacceptable).

Ensuite, vous avez deux façons de calculer DR de l'image numérique.

  • Dumb way utilise des données de pixels pour calculer le bruit (mesures "écran" sur le site DxO). Si vous calculez le DR du capteur linéaire avec X bit ADC de cette façon, il ne peut en aucun cas être plus grand que X EV.
  • La manière intelligente (qui est le seul moyen possible de comparer des photos d'appareils photo avec une résolution différente) tient compte de la résolution lors du calcul du bruit (mesures "d'impression" sur DxO). Le DR n'est pas limité par l'ADC de cette façon, on peut potentiellement fabriquer un appareil photo avec un capteur plus grand et le même ADC et il aura une plus grande plage dynamique perceptible.

Ainsi, vous ne trouverez aucune caméra dont le DR «écran» exprimé en EV dépasse la résolution ADC exprimée en bits.

Commentaires sur d'autres réponses:

D'après cela, je pense que nous pouvons déterminer que le capteur du K-5 n'a pas de convertisseur A / D linéaire.

Il n'y a pas un seul capteur numérique avec conversion A / N non linéaire développé. Chaque conversion tonale effectuée par la caméra (y compris les modes de sortie spéciaux des caméras de cinéma et de la série Sony A7 en particulier) est effectuée à l'aide des données discrètes.

Le Kodak DCS Pro 14n a un mode de fonctionnement ADC à double pente dans lequel la sortie est linéaire par morceaux.

Étant donné le score du K-5 en présence de ces sources de bruit, cela m'indique que le pipeline d'images a un degré modéré de non-linéarité

Le K-5 a une réponse parfaitement plate (comme tout autre appareil photo avec probablement la seule exclusion étant Kodak DCS Pro). Je l'ai mesuré moi-même.

Remarque: DxO Labs ne redimensionne ni n'imprime rien pour les mesures "d'impression", il utilise plutôt le coefficient de résolution dans les formules. Sidenote: dans ce post, «linéaire» n'est pas «logarythmique».

En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.