Vous vouliez le calcul, alors voici:
Vous devez connaître le CoC de votre appareil photo, les capteurs Canon APS-C, ce nombre est 0,018, pour Nikon APS-C 0,019, pour les capteurs plein format et les films 35 mm, le nombre est 0,029.
La formule est pour l'exhaustivité:
CoC (mm) = viewing distance (cm) / desired final-image resolution (lp/mm) for a 25 cm viewing distance / enlargement / 25
Une autre façon de procéder est la formule Zeiss :
c = d/1730
Où d est la taille diagonale du capteur et c est le CoC maximum acceptable. Cela donne des chiffres légèrement différents.
Vous devez d'abord calculer la distance hyperfocale pour votre objectif et votre appareil photo (cette formule est inexacte avec des distances proches de la distance focale, par exemple macro extrême):
HyperFocal[mm] = (FocalLength * FocalLength) / (Aperture * CoC)
par exemple:
50mm lens @ f/1.4 on a full frame: 61576mm (201.7 feet)
50mm lens @ f/2.8 on a full frame: 30788mm (101 feet)
50mm lens @ f/1.4 on a Canon APS frame: 99206mm (325.4 feet)
50mm lens @ f/2.8 on a Canon APS frame: 49600mm (162.7 feet)
Ensuite, vous devez calculer le point proche qui est la distance la plus proche qui sera mise au point compte tenu de la distance entre l'appareil photo et le sujet:
NearPoint[mm] = (HyperFocal * distance) / (HyperFocal + (distance – focal))
par exemple:
50mm lens @ f/1.4 on a full frame with a subject at 1m distance: 0.984m (~16mm in front of target)
50mm lens @ f/1.4 on a full frame with a subject at 3m distance: 2.862m (~137mm in front of target)
50mm lens @ f/2.8 on a full frame with a subject at 1m distance: 0.970m (~30mm in front of target)
50mm lens @ f/2.8 on a full frame with a subject at 3m distance: 2.737m (~263mm in front of target)
50mm lens @ f/1.4 on a Canon APS frame with a subject at 1m distance: 0.990m (~10mm in front of target)
50mm lens @ f/1.4 on a Canon APS frame with a subject at 3m distance: 2.913m (~86mm in front of target)
50mm lens @ f/2.8 on a Canon APS frame with a subject at 1m distance: 0.981m (~19mm in front of target)
50mm lens @ f/2.8 on a Canon APS frame with a subject at 3m distance: 2.831m (~168mm in front of target)
Ensuite, vous devez calculer le point éloigné qui est la distance la plus éloignée qui sera mise au point compte tenu de la distance entre l'appareil photo et le sujet:
FarPoint[mm] = (HyperFocal * distance) / (HyperFocal – (distance – focal))
par exemple:
50mm lens @ f/1.4 on a full frame with a subject at 1m distance: 1.015m (~15mm behind of target)
50mm lens @ f/1.4 on a full frame with a subject at 3m distance: 3.150m (~150mm behind of target)
50mm lens @ f/2.8 on a full frame with a subject at 1m distance: 1.031m (~31mm behind of target)
50mm lens @ f/2.8 on a full frame with a subject at 3m distance: 3.317m (~317mm behind of target)
50mm lens @ f/1.4 on a Canon APS frame with a subject at 1m distance: 1.009m (~9mm behind of target)
50mm lens @ f/1.4 on a Canon APS frame with a subject at 3m distance: 3.091m (~91mm behind of target)
50mm lens @ f/2.8 on a Canon APS frame with a subject at 1m distance: 1.019m (~19mm behind of target)
50mm lens @ f/2.8 on a Canon APS frame with a subject at 3m distance: 3.189m (~189mm behind of target)
Vous pouvez maintenant calculer la distance focale totale:
TotalDoF = FarPoint - NearPoint
par exemple:
50mm lens @ f/1.4 on a full frame with a subject at 1m distance: 31mm
50mm lens @ f/1.4 on a full frame with a subject at 3m distance: 228mm
50mm lens @ f/2.8 on a full frame with a subject at 1m distance: 61mm
50mm lens @ f/2.8 on a full frame with a subject at 3m distance: 580mm
50mm lens @ f/1.4 on a Canon APS frame with a subject at 1m distance: 19mm
50mm lens @ f/1.4 on a Canon APS frame with a subject at 3m distance: 178mm
50mm lens @ f/2.8 on a Canon APS frame with a subject at 1m distance: 38mm
50mm lens @ f/2.8 on a Canon APS frame with a subject at 3m distance: 358mm
Donc la formule complète w / CoC et HyperFocal précalculée:
TotalDoF[mm] = ((HyperFocal * distance) / (HyperFocal – (distance – focal))) -(HyperFocal * distance) / (HyperFocal + (distance – focal))
Ou simplifié:
TotalDoF[mm] = (2 * HyperFocal * distance * (distance - focal)) / (( HyperFocal + distance - focal) * (HyperFocal + focal - distance))
Avec CoC précalculé: j'ai tenté de simplifier les équations suivantes avec les substitutions suivantes: a = distance de visualisation (cm) b = résolution d'image finale souhaitée (lp / mm) pour une distance de visualisation de 25 cm c = agrandissement d = FocalLength e = Ouverture f = distance X = CoC
TotalDoF = ((((d * d) / (e * X)) * f) / (((d * d) / (e * X)) – (f – d))) - ((((d * d) / (e * X)) * f) / (((d * d) / (e * X)) + (f – d)))
Simplifié:
TotalDoF = (2*X*d^2*f*e(d-f))/((d^2 - X*d*e + X*f*e)*(d^2 + X*d*e - X*f*e))
Encore plus simplifié avec WolframAlpha:
TotalDoF = (2 * d^2 * e * (d - f) * f * X)/(d^4 - e^2 * (d - f)^2 * X^2)
Ou si rien n'est précalculé, vous obtenez ce monstre, qui est inutilisable:
TotalDoF = ((FocalLength * FocalLength) / (Aperture * (viewing distance (cm) / desired final-image resolution (lp/mm) for a 25 cm viewing distance / enlargement / 25)) * distance) / ((FocalLength * FocalLength) / (Aperture * (viewing distance (cm) / desired final-image resolution (lp/mm) for a 25 cm viewing distance / enlargement / 25)) – (distance – focal)) - ((FocalLength * FocalLength) / (Aperture * (viewing distance (cm) / desired final-image resolution (lp/mm) for a 25 cm viewing distance / enlargement / 25)) * distance) / ((FocalLength * FocalLength) / (Aperture * (viewing distance (cm) / desired final-image resolution (lp/mm) for a 25 cm viewing distance / enlargement / 25)) + (distance – focal))
Simplifié:
(50*a*b*c*d^2*f*e*(d-f))/((25*b*c*d^2 - a*d*e + a*f*e)*(25*b*c*d^2 + a*d*e - a*f*e)
Donc, utilisez essentiellement CoC recalculé et HyperFocal :)