Le problème:
Nous avons un site social où les membres peuvent s'évaluer pour la compatibilité ou la correspondance. Ce user_match_ratings
tableau contient plus de 220 millions de lignes (9 gig data ou presque 20 gig dans les index). Les requêtes sur cette table s'affichent régulièrement dans slow.log (seuil> 2 secondes) et constituent la requête lente la plus fréquemment enregistrée dans le système:
Query_time: 3 Lock_time: 0 Rows_sent: 3 Rows_examined: 1051
"select rating, count(*) as tally from user_match_ratings where rated_user_id = 395357 group by rating;"
Query_time: 4 Lock_time: 0 Rows_sent: 3 Rows_examined: 1294
"select rating, count(*) as tally from user_match_ratings where rated_user_id = 4182969 group by rating;"
Query_time: 3 Lock_time: 0 Rows_sent: 3 Rows_examined: 446
"select rating, count(*) as tally from user_match_ratings where rated_user_id = 630148 group by rating;"
Query_time: 5 Lock_time: 0 Rows_sent: 3 Rows_examined: 3788
"select rating, count(*) as tally from user_match_ratings where rated_user_id = 1835698 group by rating;"
Query_time: 17 Lock_time: 0 Rows_sent: 3 Rows_examined: 4311
"select rating, count(*) as tally from user_match_ratings where rated_user_id = 1269322 group by rating;"
Version de MySQL:
- version du protocole: 10
- version: 5.0.77-log
- version bdb: Sleepycat Software: Berkeley DB 4.1.24: (29 janvier 2009)
- version compiler la machine: x86_64 version_compile_os: redhat-linux-gnu
Informations sur la table:
SHOW COLUMNS FROM user_match_ratings;
Donne:
╔═══════════════╦════════════╦════╦═════╦════════╦════════════════╗
║ id ║ int(11) ║ NO ║ PRI ║ NULL ║ auto_increment ║
║ rater_user_id ║ int(11) ║ NO ║ MUL ║ NULL ║ ║
║ rated_user_id ║ int(11) ║ NO ║ MUL ║ NULL ║ ║
║ rating ║ varchar(1) ║ NO ║ ║ NULL ║ ║
║ created_at ║ datetime ║ NO ║ ║ NULL ║ ║
╚═══════════════╩════════════╩════╩═════╩════════╩════════════════╝
Exemple de requête:
select * from mutual_match_ratings where id=221673540;
donne:
╔═══════════╦═══════════════╦═══════════════╦════════╦══════════════════════╗
║ id ║ rater_user_id ║ rated_user_id ║ rating ║ created_at ║
╠═══════════╬═══════════════╬═══════════════╬════════╬══════════════════════╣
║ 221673540 ║ 5699713 ║ 3890950 ║ N ║ 2013-04-09 13:00:38 ║
╚═══════════╩═══════════════╩═══════════════╩════════╩══════════════════════╝
Les index
La table comporte 3 index:
- index unique sur
rated_user_id
- indice composite sur
rater_user_id
etcreated_at
- indice composite sur
rated_user_id
etrater_user_id
affichez l'index de user_match_ratings;
donne:
╔════════════════════╦════════════╦═══════════════════════════╦══════════════╦═══════════════╦═══════════╦═════════════╦══════════╦════════╦═════════════════════════╦════════════╦══════════════════╗
║ Table ║ Non_unique ║ Key_name ║ Seq_in_index ║ Column_name ║ Collation ║ Cardinality ║ Sub_part ║ Packed ║ Null ║ Index_type ║ Comment ║
╠════════════════════╬════════════╬═══════════════════════════╬══════════════╬═══════════════╬═══════════╬═════════════╬══════════╬════════╬═════════════════════════╬════════════╬══════════════════╣
║ user_match_ratings ║ 0 ║ PRIMARY ║ 1 ║ id ║ A ║ 220781193 ║ NULL ║ NULL ║ BTREE ║ ║ ║
║ user_match_ratings ║ 1 ║ user_match_ratings_index1 ║ 1 ║ rater_user_id ║ A ║ 11039059 ║ NULL ║ NULL ║ BTREE ║ ║ ║
║ user_match_ratings ║ 1 ║ user_match_ratings_index1 ║ 2 ║ created_at ║ A ║ 220781193 ║ NULL ║ NULL ║ BTREE ║ ║ ║
║ user_match_ratings ║ 1 ║ user_match_ratings_index2 ║ 1 ║ rated_user_id ║ A ║ 4014203 ║ NULL ║ NULL ║ BTREE ║ ║ ║
║ user_match_ratings ║ 1 ║ user_match_ratings_index2 ║ 2 ║ rater_user_id ║ A ║ 220781193 ║ NULL ║ NULL ║ BTREE ║ ║ ║
║ user_match_ratings ║ 1 ║ user_match_ratings_index3 ║ 1 ║ rated_user_id ║ A ║ 2480687 ║ NULL ║ NULL ║ BTREE ║ ║ ║
╚════════════════════╩════════════╩═══════════════════════════╩══════════════╩═══════════════╩═══════════╩═════════════╩══════════╩════════╩═════════════════════════╩════════════╩══════════════════╝
Même avec les index, ces requêtes sont lentes.
Ma question:
Est-ce que la séparation de cette table / données vers une autre base de données sur un serveur qui a suffisamment de RAM pour stocker ces données en mémoire accélérerait-elle ces requêtes? Y a-t-il quoi que ce soit dans la façon dont les tables / index sont configurés que nous pouvons améliorer pour accélérer ces requêtes?
Actuellement, nous avons 16 Go de mémoire; Cependant, nous envisageons de mettre à niveau la machine existante à 32 Go ou d'ajouter une nouvelle machine avec au moins autant, peut-être des disques SSD.
SELECT QUERY
. Souhaitez-vous s'il vous plaît suggérer? PS Votre question m'a forcé à rejoindre cette communauté (y);)