J'ai fait beaucoup d'expérimentations et voici mes résultats.
GIN et tri
L'index GIN actuellement (à partir de la version 9.4) ne peut pas aider à la commande .
Parmi les types d'index actuellement pris en charge par PostgreSQL, seul B-tree peut produire une sortie triée - les autres types d'index renvoient des lignes correspondantes dans un ordre non spécifié, dépendant de l'implémentation.
work_mem
Merci Chris d'avoir signalé ce paramètre de configuration . La valeur par défaut est 4 Mo, et dans le cas où votre jeu d'enregistrements est plus grand, l'augmentation work_mem
à la valeur appropriée (disponible à partir de EXPLAIN ANALYSE
) peut accélérer considérablement les opérations de tri.
ALTER SYSTEM SET work_mem TO '32MB';
Redémarrez le serveur pour que les modifications prennent effet, puis revérifiez:
SHOW work_mem;
Requête d'origine
J'ai rempli ma base de données avec 650k produits avec certaines catégories contenant jusqu'à 40k produits. J'ai simplifié un peu la requête en supprimant la published
clause:
SELECT * FROM products WHERE category_ids @> ARRAY [248688]
ORDER BY score DESC, title LIMIT 10 OFFSET 30000;
Limit (cost=2435.62..2435.62 rows=1 width=1390) (actual time=1141.254..1141.256 rows=10 loops=1)
-> Sort (cost=2434.00..2435.62 rows=646 width=1390) (actual time=1115.706..1140.513 rows=30010 loops=1)
Sort Key: score, title
Sort Method: external merge Disk: 29656kB
-> Bitmap Heap Scan on products (cost=17.01..2403.85 rows=646 width=1390) (actual time=11.831..25.646 rows=41666 loops=1)
Recheck Cond: (category_ids @> '{248688}'::integer[])
Heap Blocks: exact=6471
-> Bitmap Index Scan on idx_products_category_ids_gin (cost=0.00..16.85 rows=646 width=0) (actual time=10.140..10.140 rows=41666 loops=1)
Index Cond: (category_ids @> '{248688}'::integer[])
Planning time: 0.288 ms
Execution time: 1146.322 ms
Comme nous pouvons le voir, ce work_mem
n'était pas suffisant, nous en avions Sort Method: external merge Disk: 29656kB
(le nombre ici est approximatif, il a besoin d'un peu plus de 32 Mo pour le tri rapide en mémoire).
Réduisez l'empreinte mémoire
Ne sélectionnez pas les enregistrements complets pour le tri, utilisez les identifiants, appliquez le tri, le décalage et la limite, puis chargez seulement 10 enregistrements dont nous avons besoin:
SELECT * FROM products WHERE id in (
SELECT id FROM products WHERE category_ids @> ARRAY[248688]
ORDER BY score DESC, title LIMIT 10 OFFSET 30000
) ORDER BY score DESC, title;
Sort (cost=2444.10..2444.11 rows=1 width=1390) (actual time=707.861..707.862 rows=10 loops=1)
Sort Key: products.score, products.title
Sort Method: quicksort Memory: 35kB
-> Nested Loop (cost=2436.05..2444.09 rows=1 width=1390) (actual time=707.764..707.803 rows=10 loops=1)
-> HashAggregate (cost=2435.63..2435.64 rows=1 width=4) (actual time=707.744..707.746 rows=10 loops=1)
Group Key: products_1.id
-> Limit (cost=2435.62..2435.62 rows=1 width=72) (actual time=707.732..707.734 rows=10 loops=1)
-> Sort (cost=2434.00..2435.62 rows=646 width=72) (actual time=704.163..706.955 rows=30010 loops=1)
Sort Key: products_1.score, products_1.title
Sort Method: quicksort Memory: 7396kB
-> Bitmap Heap Scan on products products_1 (cost=17.01..2403.85 rows=646 width=72) (actual time=11.587..35.076 rows=41666 loops=1)
Recheck Cond: (category_ids @> '{248688}'::integer[])
Heap Blocks: exact=6471
-> Bitmap Index Scan on idx_products_category_ids_gin (cost=0.00..16.85 rows=646 width=0) (actual time=9.883..9.883 rows=41666 loops=1)
Index Cond: (category_ids @> '{248688}'::integer[])
-> Index Scan using products_pkey on products (cost=0.42..8.45 rows=1 width=1390) (actual time=0.004..0.004 rows=1 loops=10)
Index Cond: (id = products_1.id)
Planning time: 0.682 ms
Execution time: 707.973 ms
Remarque Sort Method: quicksort Memory: 7396kB
. Le résultat est bien meilleur.
JOIN et index B-tree supplémentaire
Comme Chris l'a conseillé, j'ai créé un index supplémentaire:
CREATE INDEX idx_test7 ON products (score DESC, title);
J'ai d'abord essayé de rejoindre comme ceci:
SELECT * FROM products NATURAL JOIN
(SELECT id FROM products WHERE category_ids @> ARRAY[248688]
ORDER BY score DESC, title LIMIT 10 OFFSET 30000) c
ORDER BY score DESC, title;
Le plan de requête diffère légèrement mais le résultat est le même:
Sort (cost=2444.10..2444.11 rows=1 width=1390) (actual time=700.747..700.747 rows=10 loops=1)
Sort Key: products.score, products.title
Sort Method: quicksort Memory: 35kB
-> Nested Loop (cost=2436.05..2444.09 rows=1 width=1390) (actual time=700.651..700.690 rows=10 loops=1)
-> HashAggregate (cost=2435.63..2435.64 rows=1 width=4) (actual time=700.630..700.630 rows=10 loops=1)
Group Key: products_1.id
-> Limit (cost=2435.62..2435.62 rows=1 width=72) (actual time=700.619..700.619 rows=10 loops=1)
-> Sort (cost=2434.00..2435.62 rows=646 width=72) (actual time=697.304..699.868 rows=30010 loops=1)
Sort Key: products_1.score, products_1.title
Sort Method: quicksort Memory: 7396kB
-> Bitmap Heap Scan on products products_1 (cost=17.01..2403.85 rows=646 width=72) (actual time=10.796..32.258 rows=41666 loops=1)
Recheck Cond: (category_ids @> '{248688}'::integer[])
Heap Blocks: exact=6471
-> Bitmap Index Scan on idx_products_category_ids_gin (cost=0.00..16.85 rows=646 width=0) (actual time=9.234..9.234 rows=41666 loops=1)
Index Cond: (category_ids @> '{248688}'::integer[])
-> Index Scan using products_pkey on products (cost=0.42..8.45 rows=1 width=1390) (actual time=0.004..0.004 rows=1 loops=10)
Index Cond: (id = products_1.id)
Planning time: 1.015 ms
Execution time: 700.918 ms
En jouant avec différents décalages et nombre de produits, je n'ai pas pu faire en sorte que PostgreSQL utilise un index B-tree supplémentaire.
Je suis donc allé de façon classique et j'ai créé une table de jonction :
CREATE TABLE prodcats AS SELECT id AS product_id, unnest(category_ids) AS category_id FROM products;
CREATE INDEX idx_prodcats_cat_prod_id ON prodcats (category_id, product_id);
SELECT p.* FROM products p JOIN prodcats c ON (p.id=c.product_id)
WHERE c.category_id=248688
ORDER BY p.score DESC, p.title LIMIT 10 OFFSET 30000;
Limit (cost=122480.06..122480.09 rows=10 width=1390) (actual time=1290.360..1290.362 rows=10 loops=1)
-> Sort (cost=122405.06..122509.00 rows=41574 width=1390) (actual time=1264.250..1289.575 rows=30010 loops=1)
Sort Key: p.score, p.title
Sort Method: external merge Disk: 29656kB
-> Merge Join (cost=50.46..94061.13 rows=41574 width=1390) (actual time=117.746..182.048 rows=41666 loops=1)
Merge Cond: (p.id = c.product_id)
-> Index Scan using products_pkey on products p (cost=0.42..90738.43 rows=646067 width=1390) (actual time=0.034..116.313 rows=210283 loops=1)
-> Index Only Scan using idx_prodcats_cat_prod_id on prodcats c (cost=0.43..1187.98 rows=41574 width=4) (actual time=0.022..7.137 rows=41666 loops=1)
Index Cond: (category_id = 248688)
Heap Fetches: 0
Planning time: 0.873 ms
Execution time: 1294.826 ms
N'utilisant toujours pas l'indice B-tree, l'ensemble de résultats ne correspondait pas work_mem
, d'où de mauvais résultats.
Mais dans certaines circonstances, ayant un grand nombre de produits et un petit décalage, PostgreSQL décide maintenant d'utiliser l'index B-tree:
SELECT p.* FROM products p JOIN prodcats c ON (p.id=c.product_id)
WHERE c.category_id=248688
ORDER BY p.score DESC, p.title LIMIT 10 OFFSET 300;
Limit (cost=3986.65..4119.51 rows=10 width=1390) (actual time=264.176..264.574 rows=10 loops=1)
-> Nested Loop (cost=0.98..552334.77 rows=41574 width=1390) (actual time=250.378..264.558 rows=310 loops=1)
-> Index Scan using idx_test7 on products p (cost=0.55..194665.62 rows=646067 width=1390) (actual time=0.030..83.026 rows=108037 loops=1)
-> Index Only Scan using idx_prodcats_cat_prod_id on prodcats c (cost=0.43..0.54 rows=1 width=4) (actual time=0.001..0.001 rows=0 loops=108037)
Index Cond: ((category_id = 248688) AND (product_id = p.id))
Heap Fetches: 0
Planning time: 0.585 ms
Execution time: 264.664 ms
Ceci est en fait assez logique car l'index B-tree ici ne produit pas de résultat direct, il est uniquement utilisé comme guide pour le scan séquentiel.
Comparons avec la requête GIN:
SELECT * FROM products WHERE id in (
SELECT id FROM products WHERE category_ids @> ARRAY[248688]
ORDER BY score DESC, title LIMIT 10 OFFSET 300
) ORDER BY score DESC, title;
Sort (cost=2519.53..2519.55 rows=10 width=1390) (actual time=143.809..143.809 rows=10 loops=1)
Sort Key: products.score, products.title
Sort Method: quicksort Memory: 35kB
-> Nested Loop (cost=2435.14..2519.36 rows=10 width=1390) (actual time=143.693..143.736 rows=10 loops=1)
-> HashAggregate (cost=2434.71..2434.81 rows=10 width=4) (actual time=143.678..143.680 rows=10 loops=1)
Group Key: products_1.id
-> Limit (cost=2434.56..2434.59 rows=10 width=72) (actual time=143.668..143.670 rows=10 loops=1)
-> Sort (cost=2433.81..2435.43 rows=646 width=72) (actual time=143.642..143.653 rows=310 loops=1)
Sort Key: products_1.score, products_1.title
Sort Method: top-N heapsort Memory: 68kB
-> Bitmap Heap Scan on products products_1 (cost=17.01..2403.85 rows=646 width=72) (actual time=11.625..31.868 rows=41666 loops=1)
Recheck Cond: (category_ids @> '{248688}'::integer[])
Heap Blocks: exact=6471
-> Bitmap Index Scan on idx_products_category_ids_gin (cost=0.00..16.85 rows=646 width=0) (actual time=9.916..9.916 rows=41666 loops=1)
Index Cond: (category_ids @> '{248688}'::integer[])
-> Index Scan using products_pkey on products (cost=0.42..8.45 rows=1 width=1390) (actual time=0.004..0.004 rows=1 loops=10)
Index Cond: (id = products_1.id)
Planning time: 0.630 ms
Execution time: 143.921 ms
Le résultat de GIN est bien meilleur. J'ai vérifié avec différentes combinaisons de nombre de produits et de décalage, en aucun cas l'approche de la table de jonction n'était meilleure .
La puissance de l'indice réel
Pour que PostgreSQL utilise pleinement l'index pour le tri, tous les WHERE
paramètres de requête ainsi que les ORDER BY
paramètres doivent résider dans un index B-tree unique. Pour ce faire, j'ai copié les champs de tri du produit vers la table de jonction:
CREATE TABLE prodcats AS SELECT id AS product_id, unnest(category_ids) AS category_id, score, title FROM products;
CREATE INDEX idx_prodcats_1 ON prodcats (category_id, score DESC, title, product_id);
SELECT * FROM products WHERE id in (SELECT product_id FROM prodcats WHERE category_id=248688 ORDER BY score DESC, title LIMIT 10 OFFSET 30000) ORDER BY score DESC, title;
Sort (cost=2149.65..2149.67 rows=10 width=1390) (actual time=7.011..7.011 rows=10 loops=1)
Sort Key: products.score, products.title
Sort Method: quicksort Memory: 35kB
-> Nested Loop (cost=2065.26..2149.48 rows=10 width=1390) (actual time=6.916..6.950 rows=10 loops=1)
-> HashAggregate (cost=2064.83..2064.93 rows=10 width=4) (actual time=6.902..6.904 rows=10 loops=1)
Group Key: prodcats.product_id
-> Limit (cost=2064.02..2064.71 rows=10 width=74) (actual time=6.893..6.895 rows=10 loops=1)
-> Index Only Scan using idx_prodcats_1 on prodcats (cost=0.56..2860.10 rows=41574 width=74) (actual time=0.010..6.173 rows=30010 loops=1)
Index Cond: (category_id = 248688)
Heap Fetches: 0
-> Index Scan using products_pkey on products (cost=0.42..8.45 rows=1 width=1390) (actual time=0.003..0.003 rows=1 loops=10)
Index Cond: (id = prodcats.product_id)
Planning time: 0.318 ms
Execution time: 7.066 ms
Et c'est le pire scénario avec un grand nombre de produits dans la catégorie choisie et un grand décalage. Lorsque offset = 300, le temps d'exécution n'est que de 0,5 ms.
Malheureusement, le maintien d'une telle table de jonction nécessite un effort supplémentaire. Cela peut être accompli via des vues matérialisées indexées, mais cela n'est utile que lorsque vos données sont rarement mises à jour, car l'actualisation de cette vue matérialisée est une opération assez lourde.
Donc, je reste avec l'index GIN jusqu'à présent, avec une work_mem
requête d'empreinte mémoire augmentée et réduite.