Le théorème de prétention parallèle de Raz est un résultat important dans le PCP, l'inapproximation, etc. Le théorème est fomalisé comme suit.
Un jeu , où S , T , A , B sont des ensembles finis, π est une distribution sur S × T et un prédicat V : S × T × A × B → { 0 , 1 } . Définir la valeur du jeu v ( G ) = max h
My quesion is what happen if the sets are infinite, in a continuous space. Say if are subsets of a space, say , or more abstract spaces. All the rest are same. Raz's theorem only gives a trivial upper bound since the sizes of answer sets are infinite. Obviously -fold value is upper bounded by single copy. Does exponential decrease also happen in continuous case? Would it be more interesting to restrict to be collections of continuous functions or functions or measureable functions?