Instance de réductions FPT qui n'est pas une réduction de temps polynomial


11

Dans la complexité paramétrée, les gens utilisent la réduction à paramètres fixes (FPT) pour prouver la dureté W [t]. Théoriquement, une réduction FPT n'est pas une réduction du temps polynomial, car elle peut s'exécuter de façon exponentielle dans le paramètre k. Mais dans la pratique, toutes les réductions FPT que j'ai vues sont des réductions de temps p, ce qui signifie que les preuves de dureté W [t] impliquent presque toujours des preuves d'exhaustivité NP.

Je me demande si quelqu'un peut me donner une réduction FPT qui fonctionne en effet de façon exponentielle dans le paramètre . Merci.k

Réponses:


11

Un premier exemple est la preuve de dureté W [2] pour l'ensemble dominant de tournoi (Théorème 4.1 dans [1]). La réduction provient de l'ensemble dominant et elle construit un tournoi avec sommets, où est le nombre de sommets de l'instance d'ensemble dominant et est le paramètre.n kO(2kn)nk

[1]: Rodney G. Downey et Michael R. Fellows. Faisabilité informatique paramétrée. Dans P. Clote et JB Remmel, éditeurs, Proceedings of Feasible Mathematics II, pages 219-244. Birkhauser, 1995.


1
Une preuve (peut-être différente) de la même affirmation peut également être trouvée dans le livre "Parameterized Complexity Theory" de J. Flum et M. Grohe, Theorem 7.17.
Mathieu Chapelle


6

En complément des autres réponses, la proposition suivante montre que les notions correspondantes de réductibilité sont incomparables:

(Q,k)(Q,k)(Q,k)<Fpt(Q,k)Q<ptjeme Q

<Fpt<ptjeme

[2]: J. Flum, M. Grohe. Théorie de la complexité paramétrée. Springer (2006)


5

Ce n'est probablement pas une réponse escomptée, mais que diriez-vous (une variante dérandomisée de) du codage couleur pour le problème du chemin k? http://en.wikipedia.org/wiki/Color-coding

Là, on transforme une instance du problème de chemin k en instances du problème de chemin k coloré par une réduction fpt avec une dépendance superpolynomiale à k. (On crée plusieurs instances, mais elles peuvent être considérées comme une seule grande instance.) Puisque le problème coloré du chemin k peut être résolu en temps fpt par programmation dynamique, nous pouvons conclure que le problème du chemin k appartient à FPT.


3

Un autre exemple d'une telle réduction est la preuve de dureté pour la dimension VC. Voir «Complexité d'apprentissage paramétré» par Downey, Evans et Fellows.

En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.