On dit qu'une fonction booléenne f : { 0 , 1 } n → { 0 , 1 }
Soit f : { 0 , 1 } n → { 0 , 1 }
Soit maintenant ϵ > 0
Remarque: Dans la formulation originale de la question, c
On dit qu'une fonction booléenne f : { 0 , 1 } n → { 0 , 1 }
Soit f : { 0 , 1 } n → { 0 , 1 }
Soit maintenant ϵ > 0
Remarque: Dans la formulation originale de la question, c
Réponses:
La réponse est oui". La preuve est par contradiction.
Pour plus de commodité, notons les premières n / 2 variables par x et les secondes n / 2 variables par y . Supposons que f ( x , y ) soit δ- proche d'une fonction f 1 ( x , y ) qui ne dépend que des coordonnées k de x . Désignons ses coordonnées influentes par T 1 . De même, supposons que f ( x , y ) soit
Disons que ( x 1 , y 1 ) ∼ ( x 2 , y 2 ) si x 1 et x 2 s'accordent sur toutes les coordonnées en T 1 et y 1 et y 2 s'accordent sur toutes les coordonnées en T 2 . Nous choisissons uniformément au hasard un représentant de chaque classe d'équivalence. Soit ( ˉ x , ˉ y ) le représentant de la classe de ( x ,
Il est évident que ˜ f est une junte de 2 k (cela ne dépend que des variables de T 1 ∪ T 2 ) . Nous prouverons qu'il est à la distance 4 δ de f dans l'attente.
Nous voulons prouver que Pr ˜ f ( Pr x , y ( ˜ f ( x , y ) ≠ f ( x , y ) ) ) = Pr ( f ( ˉ x , ˉ y ) ≠ f ( x , y ) ) ≤ 4 δ , où x et y sont choisis uniformément au hasard. Considérons un vecteur aléatoire
We have, Pr(f(x,y)≠f(˜x,y))≤Pr(f(x,y)≠f1(x,y))+Pr(f1(x,y)≠f1(˜x,y))+Pr(f1(˜x,y)≠f(˜x,y))≤δ+0+δ=2δ.
Similarly, Pr(f(˜x,y)≠f(˜x,˜y))≤2δ
It easy to “derandomize” this proof. For every (x,y)
The smallest c
Lemmas 1 and 2 show that the bound holds for this c
(In comparison, Juri's elegant probabilistic argument gives c=4
Let c=1√2−1
Lemma 1:
If f
Proof.
Let ϵ
(I find it helpful to visualize f
Let g0
Without loss of generality, assume that, for any pair such that g(y,z)=h(y,z)
The distance from f
The distance from f
The distance from f
Further, the distance from f
Thus, the ratio ϵ/(ϵg+ϵh)
By calculation, this ratio is at most
12(√2−1)=c/2
Lemma 2 extends Lemma 1 to general k
Lemma 2: Fix any k. If f is ϵg-near a function g that has k influencing variables in S2, and f is ϵh-near a function h that has k influencing variables in S1, then f is ϵ-near a function ˆf that has at most 2k influencing variables, where ϵ≤(ϵg+ϵh)/2c.
Proof. Express f as f(a,y,b,z) where (a,y) contains the variables in S1 with a containing those that influence h, while (b,z) contains the variables in S2 with b containing those influencing g. So g(a,y,b,z) is independent of z, and h(a,y,b,z) is independent of y.
For each fixed value of a and b, define Fab(y,z)=f(a,y,b,z), and define Gab and Hab similarly from g and h respectively. Let ϵgab be the distance from Fab to Gab (restricted to (y,z) pairs). Likewise let ϵhab be the distance from Fab to Hab.
By Lemma 1, there exists a constant cab such that the distance (call it ϵab) from Fab to the constant function cab is at most (ϵhab+ϵgab)/(2c). Define ˆf(a,y,b,z)=cab.
Clearly ˆf depends only on a and b (and thus at most k variables).
Let ϵˆf be the average, over the (a,b) pairs, of the ϵab's, so that the distance from f to ˆf is ϵˆf.
Likewise, the distances from f to g and from f to h (that is, ϵg and ϵh) are the averages, over the (a,b) pairs, of, respectively, ϵgab and ϵhab.
Since ϵab≤(ϵhab+ϵgab)/(2c) for all a,b, it follows that ϵˆf≤(ϵg+ϵh)/(2c). QED
Lemma 3 shows that the constant c above is the best you can hope for (even for k=0 and ϵ=0.5).
Lemma 3: There exists f such that f is (0.5/c)-near two functions g and h, where g has no influencing variables in S2 and h has no influencing variables in S1, and f is 0.5-far from every constant function.
Proof. Let y and z be x restricted to, respectively, S1 and S2. That is, y=(x1,…,xn/2) and z=(xn/2+1,…,xn).
Identify each possible y with a unique element of [N], where N=2n/2. Likewise, identify each possible z with a unique element of [N]. Thus, we think of f as a function from [N]×[N] to {0,1}.
Define f(y,z) to be 1 iff max(y,z)≥1√2N.
By calculation, the fraction of f's values that are zero is (1√2)2=12, so both constant functions have distance 12 to f.
Define g(y,z) to be 1 iff y≥1√2N. Then g has no influencing variables in S2. The distance from f to g is the fraction of pairs (y,z) such that y<1√2N and z≥1√2N. By calculation, this is at most 1√2(1−1√2)=0.5/c
Similarly, the distance from f to h, where h(y,z)=1 iff z≥1√2N, is at most 0.5/c.
QED