Imprimez tous les carrés robustes 3 x 3


24

Un carré solide (semblable à un carré magique ) est un arrangement des entiers 1 à N 2 sur une grille N par N de telle sorte que chaque sous-grille 2 par 2 a la même somme.

Par exemple, pour N = 3, un carré solide est

1 5 3
9 8 7
4 2 6

parce que les quatre sous-grilles 2 par 2

1 5
9 8
5 3
8 7
9 8
4 2
8 7
2 6

somme totale au même montant, 23:

23 = 1 + 5 + 9 + 8 = 5 + 3 + 8 + 7 = 9 + 8 + 4 + 2 = 8 + 7 + 2 + 6

Il existe maintenant des carrés robustes pour des valeurs plus élevées de N et même des versions rectangulaires, mais votre seule tâche dans ce défi est de produire tous les carrés robustes 3 x 3 possibles. Il y a exactement 376 carrés robustes distincts de 3 sur 3, y compris ceux qui sont des réflexions ou des rotations des autres, et tous n'ont pas la même somme de 23.

Écrivez un programme ou une fonction qui ne prend aucune entrée mais imprime ou retourne une chaîne de tous les 376 carrés robustes dans n'importe quel ordre, séparés par des lignes vides, avec jusqu'à deux retours à la ligne facultatifs. Chaque carré doit être composé de trois lignes de trois chiffres décimaux non nuls séparés par des espaces.

Voici un exemple de sortie valide:

1 5 3
9 8 7
4 2 6

1 5 6
8 7 3
4 2 9

1 5 6
8 9 3
2 4 7

1 5 7
9 6 3
2 4 8

1 6 2
8 9 7
4 3 5

1 6 2
9 7 8
4 3 5

1 6 3
9 8 7
2 5 4

1 6 7
8 5 2
3 4 9

1 6 7
9 4 3
2 5 8

1 7 2
9 4 8
5 3 6

1 7 2
9 6 8
3 5 4

1 7 4
8 3 5
6 2 9

1 7 4
9 2 6
5 3 8

1 7 6
9 2 4
3 5 8

1 8 2
5 9 4
6 3 7

1 8 3
6 5 4
7 2 9

1 8 3
9 2 7
4 5 6

1 8 4
5 7 2
6 3 9

1 8 4
6 9 3
2 7 5

1 8 4
9 3 6
2 7 5

1 8 6
7 3 2
4 5 9

1 9 2
5 6 4
7 3 8

1 9 2
6 4 5
7 3 8

1 9 2
6 8 5
3 7 4

1 9 2
8 3 7
4 6 5

1 9 3
7 2 5
6 4 8

1 9 3
7 6 5
2 8 4

1 9 4
5 8 2
3 7 6

1 9 4
6 7 3
2 8 5

1 9 4
8 2 5
3 7 6

1 9 5
7 2 3
4 6 8

1 9 5
7 4 3
2 8 6

2 3 5
9 8 6
4 1 7

2 3 6
9 7 5
4 1 8

2 4 3
8 9 7
5 1 6

2 4 3
9 7 8
5 1 6

2 4 6
7 8 3
5 1 9

2 4 7
8 9 3
1 5 6

2 4 8
9 6 3
1 5 7

2 5 3
9 4 8
6 1 7

2 5 4
9 3 7
6 1 8

2 5 4
9 8 7
1 6 3

2 5 7
6 8 1
4 3 9

2 5 7
6 9 1
3 4 8

2 5 8
7 6 1
3 4 9

2 5 8
9 4 3
1 6 7

2 6 1
7 9 8
5 3 4

2 6 1
8 7 9
5 3 4

2 6 3
5 9 4
7 1 8

2 6 4
5 8 3
7 1 9

2 6 7
9 1 4
3 5 8

2 6 8
7 4 1
3 5 9

2 7 1
8 4 9
6 3 5

2 7 1
8 6 9
4 5 3

2 7 3
5 6 4
8 1 9

2 7 3
6 4 5
8 1 9

2 7 3
9 1 8
5 4 6

2 7 5
4 8 1
6 3 9

2 7 5
6 9 3
1 8 4

2 7 5
9 3 6
1 8 4

2 8 1
4 9 5
7 3 6

2 8 4
7 6 5
1 9 3

2 8 5
4 9 1
3 7 6

2 8 5
6 7 3
1 9 4

2 8 6
7 4 3
1 9 5

2 9 1
4 6 5
8 3 7

2 9 1
5 4 6
8 3 7

2 9 1
5 8 6
4 7 3

2 9 1
7 3 8
5 6 4

2 9 3
6 1 5
7 4 8

2 9 4
3 7 1
6 5 8

2 9 4
3 8 1
5 6 7

2 9 5
4 7 1
3 8 6

2 9 5
7 1 4
3 8 6

2 9 6
5 3 1
4 7 8

2 9 6
5 4 1
3 8 7

3 2 5
9 8 7
4 1 6

3 2 6
8 9 5
4 1 7

3 2 7
9 6 5
4 1 8

3 4 2
7 9 8
6 1 5

3 4 2
8 7 9
6 1 5

3 4 5
9 2 7
6 1 8

3 4 8
6 9 1
2 5 7

3 4 9
7 6 1
2 5 8

3 4 9
8 5 2
1 6 7

3 5 1
7 8 9
6 2 4

3 5 2
8 4 9
7 1 6

3 5 4
9 1 8
6 2 7

3 5 4
9 6 8
1 7 2

3 5 8
9 1 4
2 6 7

3 5 8
9 2 4
1 7 6

3 5 9
7 4 1
2 6 8

3 6 1
7 8 9
4 5 2

3 6 2
4 9 5
8 1 7

3 6 8
7 1 2
4 5 9

3 7 2
4 6 5
9 1 8

3 7 2
5 4 6
9 1 8

3 7 2
8 1 9
6 4 5

3 7 4
6 1 5
8 2 9

3 7 4
6 8 5
1 9 2

3 7 6
4 9 1
2 8 5

3 7 6
5 8 2
1 9 4

3 7 6
8 2 5
1 9 4

3 8 1
4 5 6
9 2 7

3 8 1
7 2 9
6 5 4

3 8 4
2 9 1
6 5 7

3 8 6
4 7 1
2 9 5

3 8 6
7 1 4
2 9 5

3 8 7
5 4 1
2 9 6

3 9 1
5 2 7
8 4 6

3 9 1
5 6 7
4 8 2

3 9 2
5 1 6
8 4 7

3 9 4
2 6 1
7 5 8

3 9 4
2 8 1
5 7 6

3 9 6
4 2 1
5 7 8

3 9 6
5 1 2
4 8 7

4 1 6
9 8 7
3 2 5

4 1 7
8 9 5
3 2 6

4 1 7
9 8 6
2 3 5

4 1 8
9 6 5
3 2 7

4 1 8
9 7 5
2 3 6

4 2 6
9 8 7
1 5 3

4 2 7
6 9 3
5 1 8

4 2 7
9 3 6
5 1 8

4 2 8
7 6 3
5 1 9

4 2 9
8 7 3
1 5 6

4 3 5
8 9 7
1 6 2

4 3 5
9 2 8
6 1 7

4 3 5
9 7 8
1 6 2

4 3 7
5 8 2
6 1 9

4 3 7
8 2 5
6 1 9

4 3 7
9 1 6
5 2 8

4 3 9
6 8 1
2 5 7

4 5 2
7 3 9
8 1 6

4 5 2
7 8 9
3 6 1

4 5 3
8 1 9
7 2 6

4 5 3
8 6 9
2 7 1

4 5 6
3 8 1
7 2 9

4 5 6
9 2 7
1 8 3

4 5 9
7 1 2
3 6 8

4 5 9
7 3 2
1 8 6

4 6 2
3 8 5
9 1 7

4 6 5
2 9 1
7 3 8

4 6 5
8 3 7
1 9 2

4 6 8
7 2 3
1 9 5

4 7 1
5 3 8
9 2 6

4 7 1
6 2 9
8 3 5

4 7 3
5 1 6
9 2 8

4 7 3
5 8 6
2 9 1

4 7 5
2 6 1
8 3 9

4 7 8
5 3 1
2 9 6

4 8 1
2 7 5
9 3 6

4 8 1
3 9 6
5 7 2

4 8 1
6 3 9
5 7 2

4 8 2
5 6 7
3 9 1

4 8 3
1 9 2
7 5 6

4 8 6
3 2 1
7 5 9

4 8 7
5 1 2
3 9 6

4 9 1
2 8 5
6 7 3

4 9 1
3 7 6
5 8 2

4 9 1
5 2 8
6 7 3

4 9 2
1 7 3
8 5 6

4 9 2
1 8 3
7 6 5

4 9 3
1 6 2
8 5 7

4 9 3
1 8 2
6 7 5

4 9 5
2 3 1
7 6 8

4 9 5
3 1 2
7 6 8

4 9 6
3 2 1
5 8 7

5 1 6
8 9 7
2 4 3

5 1 6
9 7 8
2 4 3

5 1 8
6 9 3
4 2 7

5 1 8
9 3 6
4 2 7

5 1 9
7 6 3
4 2 8

5 1 9
7 8 3
2 4 6

5 2 3
7 8 9
6 1 4

5 2 8
7 3 4
6 1 9

5 2 8
9 1 6
4 3 7

5 3 2
6 8 9
7 1 4

5 3 4
7 9 8
2 6 1

5 3 4
8 2 9
7 1 6

5 3 4
8 7 9
2 6 1

5 3 6
9 4 8
1 7 2

5 3 8
4 7 1
6 2 9

5 3 8
7 1 4
6 2 9

5 3 8
9 2 6
1 7 4

5 4 3
7 2 9
8 1 6

5 4 6
3 7 2
8 1 9

5 4 6
9 1 8
2 7 3

5 6 4
1 9 2
8 3 7

5 6 4
7 3 8
2 9 1

5 6 7
3 8 1
2 9 4

5 7 2
1 8 4
9 3 6

5 7 2
3 9 6
4 8 1

5 7 2
6 3 9
4 8 1

5 7 4
1 6 2
9 3 8

5 7 6
2 3 1
8 4 9

5 7 6
2 8 1
3 9 4

5 7 6
3 1 2
8 4 9

5 7 8
4 2 1
3 9 6

5 8 2
1 9 4
6 7 3

5 8 2
3 7 6
4 9 1

5 8 7
3 2 1
4 9 6

5 9 1
3 2 7
8 6 4

5 9 1
3 4 7
6 8 2

5 9 2
1 7 4
6 8 3

5 9 2
4 1 7
6 8 3

5 9 4
1 3 2
8 6 7

5 9 4
2 1 3
8 6 7

6 1 4
7 8 9
5 2 3

6 1 5
7 9 8
3 4 2

6 1 5
8 7 9
3 4 2

6 1 7
9 2 8
4 3 5

6 1 7
9 4 8
2 5 3

6 1 8
9 2 7
3 4 5

6 1 8
9 3 7
2 5 4

6 1 9
5 8 2
4 3 7

6 1 9
7 3 4
5 2 8

6 1 9
8 2 5
4 3 7

6 2 3
5 9 8
7 1 4

6 2 4
7 8 9
3 5 1

6 2 7
9 1 8
3 5 4

6 2 8
5 4 3
7 1 9

6 2 9
4 7 1
5 3 8

6 2 9
7 1 4
5 3 8

6 2 9
8 3 5
1 7 4

6 3 2
5 7 9
8 1 4

6 3 5
8 4 9
2 7 1

6 3 7
5 2 4
8 1 9

6 3 7
5 9 4
1 8 2

6 3 9
4 8 1
2 7 5

6 3 9
5 7 2
1 8 4

6 4 2
3 8 7
9 1 5

6 4 5
2 7 3
9 1 8

6 4 5
8 1 9
3 7 2

6 4 8
7 2 5
1 9 3

6 5 1
3 7 8
9 2 4

6 5 1
3 9 8
7 4 2

6 5 4
1 8 3
9 2 7

6 5 4
7 2 9
3 8 1

6 5 7
2 4 1
8 3 9

6 5 7
2 9 1
3 8 4

6 5 8
3 2 1
7 4 9

6 5 8
3 7 1
2 9 4

6 7 1
4 2 9
8 5 3

6 7 3
1 9 4
5 8 2

6 7 3
2 8 5
4 9 1

6 7 3
5 2 8
4 9 1

6 7 5
1 3 2
9 4 8

6 7 5
1 8 2
4 9 3

6 7 5
2 1 3
9 4 8

6 8 1
2 3 7
9 5 4

6 8 2
3 4 7
5 9 1

6 8 3
1 7 4
5 9 2

6 8 3
4 1 7
5 9 2

6 8 4
1 2 3
9 5 7

6 9 2
1 3 5
8 7 4

6 9 2
1 4 5
7 8 3

6 9 3
1 2 4
8 7 5

6 9 3
2 1 5
7 8 4

6 9 4
1 2 3
7 8 5

7 1 4
5 9 8
6 2 3

7 1 4
6 8 9
5 3 2

7 1 6
8 2 9
5 3 4

7 1 6
8 4 9
3 5 2

7 1 8
5 9 4
2 6 3

7 1 9
5 4 3
6 2 8

7 1 9
5 8 3
2 6 4

7 2 3
5 6 9
8 1 4

7 2 4
3 9 6
8 1 5

7 2 4
6 3 9
8 1 5

7 2 6
8 1 9
4 5 3

7 2 9
3 8 1
4 5 6

7 2 9
6 5 4
1 8 3

7 3 4
2 8 5
9 1 6

7 3 4
5 2 8
9 1 6

7 3 4
6 1 9
8 2 5

7 3 6
4 2 5
9 1 8

7 3 6
4 9 5
2 8 1

7 3 8
2 9 1
4 6 5

7 3 8
5 6 4
1 9 2

7 3 8
6 4 5
1 9 2

7 4 2
3 9 8
6 5 1

7 4 8
6 1 5
2 9 3

7 4 9
3 2 1
6 5 8

7 5 1
3 6 9
8 4 2

7 5 2
1 8 6
9 3 4

7 5 2
1 9 6
8 4 3

7 5 6
1 4 2
9 3 8

7 5 6
1 9 2
4 8 3

7 5 8
2 6 1
3 9 4

7 5 9
3 2 1
4 8 6

7 6 1
2 5 8
9 4 3

7 6 1
3 4 9
8 5 2

7 6 2
4 1 9
8 5 3

7 6 5
1 8 3
4 9 2

7 6 8
2 3 1
4 9 5

7 6 8
3 1 2
4 9 5

7 8 3
1 4 5
6 9 2

7 8 4
2 1 5
6 9 3

7 8 5
1 2 3
6 9 4

8 1 4
5 6 9
7 2 3

8 1 4
5 7 9
6 3 2

8 1 5
3 9 6
7 2 4

8 1 5
6 3 9
7 2 4

8 1 6
7 2 9
5 4 3

8 1 6
7 3 9
4 5 2

8 1 7
4 9 5
3 6 2

8 1 9
3 7 2
5 4 6

8 1 9
5 2 4
6 3 7

8 1 9
5 6 4
2 7 3

8 1 9
6 4 5
2 7 3

8 2 4
3 6 7
9 1 5

8 2 5
4 3 7
9 1 6

8 2 5
6 1 9
7 3 4

8 2 6
3 4 5
9 1 7

8 2 9
6 1 5
3 7 4

8 3 5
1 7 4
9 2 6

8 3 5
4 1 7
9 2 6

8 3 5
6 2 9
4 7 1

8 3 7
1 9 2
5 6 4

8 3 7
4 6 5
2 9 1

8 3 7
5 4 6
2 9 1

8 3 9
2 4 1
6 5 7

8 3 9
2 6 1
4 7 5

8 4 2
3 6 9
7 5 1

8 4 3
1 9 6
7 5 2

8 4 6
5 2 7
3 9 1

8 4 7
5 1 6
3 9 2

8 4 9
2 3 1
5 7 6

8 4 9
3 1 2
5 7 6

8 5 2
1 6 7
9 4 3

8 5 2
3 4 9
7 6 1

8 5 3
4 1 9
7 6 2

8 5 3
4 2 9
6 7 1

8 5 6
1 2 3
9 4 7

8 5 6
1 7 3
4 9 2

8 5 7
1 6 2
4 9 3

8 6 2
1 4 7
9 5 3

8 6 3
2 1 7
9 5 4

8 6 4
3 2 7
5 9 1

8 6 7
1 3 2
5 9 4

8 6 7
2 1 3
5 9 4

8 7 4
1 3 5
6 9 2

8 7 5
1 2 4
6 9 3

9 1 5
3 6 7
8 2 4

9 1 5
3 8 7
6 4 2

9 1 6
2 8 5
7 3 4

9 1 6
4 3 7
8 2 5

9 1 6
5 2 8
7 3 4

9 1 7
3 4 5
8 2 6

9 1 7
3 8 5
4 6 2

9 1 8
2 7 3
6 4 5

9 1 8
4 2 5
7 3 6

9 1 8
4 6 5
3 7 2

9 1 8
5 4 6
3 7 2

9 2 4
3 7 8
6 5 1

9 2 6
1 7 4
8 3 5

9 2 6
4 1 7
8 3 5

9 2 6
5 3 8
4 7 1

9 2 7
1 8 3
6 5 4

9 2 7
4 5 6
3 8 1

9 2 8
5 1 6
4 7 3

9 3 4
1 8 6
7 5 2

9 3 6
1 8 4
5 7 2

9 3 6
2 7 5
4 8 1

9 3 8
1 4 2
7 5 6

9 3 8
1 6 2
5 7 4

9 4 3
1 6 7
8 5 2

9 4 3
2 5 8
7 6 1

9 4 7
1 2 3
8 5 6

9 4 8
1 3 2
6 7 5

9 4 8
2 1 3
6 7 5

9 5 3
1 4 7
8 6 2

9 5 4
2 1 7
8 6 3

9 5 4
2 3 7
6 8 1

9 5 7
1 2 3
6 8 4

Votre programme doit produire ces mêmes 376 carrés solides, mais pas nécessairement dans cet ordre. La sortie n'a pas besoin d'être déterministe, c'est-à-dire que vous pouvez les sortir dans des ordres différents sur des exécutions différentes tant qu'elles sont toutes là.

Le code le plus court en octets gagne.

Le sujet des carrés robustes est né de ce message de discussion qui a conduit à une grande quantité de discussions sur leurs propriétés et comment les générer. Appels à Peter Taylor , feersum et Sp3000 pour la poursuite de la discussion, et en particulier à El'endia Starman pour la rédaction d' une séquence OEIS correspondante .


Je ne suis pas sûr d'avoir correctement interprété la règle de retour à la ligne de fin . La sortie de ma révision précédente s'est terminée par 5 7 3\n\n, il y a donc une ligne vierge après le dernier carré. Est-ce admissible?
Dennis

2
Yayyy je reçois des accessoires supplémentaires! : P
El'endia Starman

Peut-être héberger la sortie ailleurs pour qu'elle ne soit pas trop longue sur cette page.
Ryan

Réponses:


9

Pyth, 38 34 33 32 octets

Vfq2l{sMX2.DR2.:T5b.pS9Vc3NjdH)k

5 octets enregistrés au formatage par Jakube

1 octet économisé en passant aux sous-chaînes de Peter Taylor de longueur cinq, supprimez l'approche des intermédiaires

Prend environ une minute et demie pour fonctionner sur ma machine.

Comment ça marche à haut niveau:

  • Générer toutes les permutations ( .pS9)

  • Longueur de forme 5 sous-chaînes ( .:T5)

  • Retirez l'élément central de chaque ( .DR2)

  • Ajoutez une nouvelle ligne à l'élément central, en le marquant avec une somme nécessairement différente ( X2 ... b)

  • Filtre pour les carrés où toutes ces sommes sont égales ( fq2l{)

  • Format et impression ( V ... Vc3NjdH)k)


Coupez Nà l'intérieur de la boucle ( V...Vc3N) plutôt qu'avant la boucle ( VcL3...VN). Enregistre un octet supplémentaire.
Jakube

8

CJam, 40 38 octets

A,1>e!3f/{2{2few:::+z}*:|,1=},Ma*Sf*N*

Merci à @PeterTaylor d'avoir joué au golf sur 2 octets!

Cela se termine instantanément en utilisant l'interpréteur Java. Cela fonctionne également avec l'interpréteur en ligne, mais cela demande un peu de patience. Essayez-le en ligne.

Essai

$ cjam sturdy-squares.cjam | head -n 8
1 5 3
9 8 7
4 2 6

1 5 6
8 7 3
4 2 9

$ cjam sturdy-squares.cjam | tail -n 8

9 5 4
2 3 7
6 8 1

9 5 7
1 2 3
6 8 4
$

Comment ça marche

A,1>     e# Push [1 ... 9].
e!       e# Push the array of all permutations of that array.
3f/      e# Split each into rows of length 3.
{        e# Filter; push the permutation, then:
  2{     e#   Do the following twice:
    2few e#     Split each row into overlapping splices of length 2.
         e#       [a b c] -> [[a b] [b c]]
    :::+ e#     Reduce each innermost vector to its sum.
         e#       [[a b] [b c]] -> [a+b b+c]
    z    e#     Transpose rows with columns.
  }*     e#   The result is [[s t] [u v]], the sums of all 2x2 squares.
  :|     e#   Perform set union of the pairs of sums.
  ,1=    e#   Check if the length of the result is 1 (unique sum).
},       e# Keep the array if the result was 1.
{        e# For each kept array:
  Sf*    e#   Join the elements of its rows, separating by spaces.
  ~M     e#   Dump the resulting strings and an empty string on the stack.
}%       e# Collect everything in an array.
N*       e# Join the strings, separating by linefeeds.

+1 Et j'étais satisfait de la brièveté de ma réponse!
DavidC

Maintenant que j'ai réussi à jouer suffisamment à ma réponse pour garder un caractère en tête: en Ma*Sf*N*sauve deux de plus{Sf*~M}%N*
Peter Taylor

@PeterTaylor C'est vrai. Merci!
Dennis

8

Python 3, 169 168 164 164 octets

J'ai pris le programme que j'ai utilisé pour enquêter sur ces carrés / rectangles robustes et je l'ai joué au golf. Golfé 4 octets grâce à otakucode.

from itertools import*
r=range(1,10)
for p in permutations(r,6):
 x,y=p[0],p[5];q=p[:5]+(x+p[3]-p[2],y,y+p[1]-x,p[2]+y-x)
 if set(q)==set(r):print('%s %s %s\n'*3%q)

Explication

Étant donné un carré solide partiellement rempli comme celui-ci,

a b c
d e ?
g ? ?

Les trois entrées restantes sont déterminés de manière unique, et sont a+d-c, a+b-get c+g-a. Je génère donc toutes les permutations de 0..8 avec six éléments, calcule le reste, puis vérifie si l'ensemble de ceci est le même que l'ensemble de 0..8. Si c'est le cas, j'imprime la grille.


Pour référence, voici l'original (avec les commentaires et le code superflu supprimés):

from itertools import permutations as P

n = 3
m = 3
permutes = P(range(m*n), m+n)

counter = 0
for p in permutes:
    grid = [p[:n]]
    for i in range(m-1):
        grid.append([p[n+i]]+[-1]*(n-1))
    grid[1][1] = p[-1]

    s = p[0]+p[1]+p[n]+p[-1]

    has = list(p)

    fail = 0
    for y in range(1,m):
        for x in range(1,n):
            if x == y == 1: continue

            r = s-(grid[y-1][x-1] + grid[y-1][x] + grid[y][x-1])

            if r not in has and 0 <= r < m*n:
                grid[y][x] = r
                has.append(r)
            else:
                fail = 1
                break

        if fail: break

    if not fail:
        counter += 1

print(counter)

J'adore cette technique
Don Bright

1
Très belle approche! Vous pouvez néanmoins enregistrer quelques octets ... dans la boucle, x, y = p [0], p [5] puis q = p + (y + p [3] -p [2], y + p [1 ] -x, p [2] + xy)
otakucode

@otakucode: Merci pour le conseil!
El'endia Starman

5

Mathematica 147 166 155 149 149 octets

Cela génère les permutations de {1,2,3 ... 9} et sélectionne les cas pour lesquels

(somme des chiffres aux positions {1,2,4,5}) =

(somme des chiffres aux positions {2,3,5,6}) =

(somme des chiffres aux positions {4,5,7,8}) =

(somme des chiffres aux positions {5,6,8,9})

f@s_:=Length@Tally[Tr@Extract[s,#]&/@Table[{{0},{1},{3},{4}}+k,{k,{1,2,4,5}}]]>1;
Row[Grid/@(#~Partition~3&/@Select[Permutations@Range@9,f@#&]),"\n"]

Sortie (un aperçu partiel)

sortie


Length[%]

376


5

CJam ( 39 37 octets)

A,1>e!{5ew{2Mtz}2*::+)-!},3f/Ma*Sf*N*

Démo en ligne (avertissement: l'exécution peut prendre plus d'une minute, ce qui déclenche les invites "Abandonner ce script?" À partir du navigateur).

Fonctionne en filtrant toutes les grilles possibles à l'aide 5ewde la carte

[a b c d e f g h i]

à

[[a b c d e]
 [b c d e f]
 [c d e f g]
 [d e f g h]
 [e f g h i]]

puis jeter l'élément du milieu et l'élément du milieu de chaque autre élément pour obtenir

[[a b d e]
 [b c e f]
 [d e g h]
 [e f h i]]

qui sont les quatre carrés.


Wow, c'est génial.
El'endia Starman

5

Python 3.5, 135 octets

from itertools import*
for x in permutations(range(1,10)):eval((("=="+"+x[%s]"*3)*4)[2:]%(*"013125367578",))and print("%d %d %d\n"*3%x)

Vérifie directement la somme de chaque carré, moins le milieu. Très probablement encore jouable par la itertoolsrègle empirique «inutile».


2

Python2 327 271 270 263 260 octets

z,v,s={},3,range(1,10)
while len(z)<376:
 for i in range(8):v=hash(`v`);s[i],s[v%9]=s[v%9],s[i]
 m=map(lambda i:sum(s[i:i+5])-s[i+2],[0,1,3,4]);T=tuple(s)
 if all(x==m[0] for x in m) and not T in z:
  z[T]=1;print '%i %i %i\n'*3 % tuple(s[0:3]+s[3:6]+s[6:9])

------------

Ce n'est pas si court mais il n'utilise pas de bibliothèques. Cela permute au hasard un carré, le vérifie pour la magie, l'imprime et l'enregistre pour éviter les doublons. Après avoir imprimé 376 carrés magiques uniques, il s'arrête.

J'ai emprunté le générateur de nombres pseudo-aléatoires à l'entrée de Keith Randall pour le golf nommé " Construire un générateur de nombres aléatoires qui réussit les tests Diehard "

z,v={},3
def R(x,y):global v;v=hash(`v`);return v
while len(z)<376:
 s=sorted(range(1,10),cmp=R)
 m=[sum(q) for q in map(lambda p:s[p[0]:p[1]+1]+s[p[2]:p[3]+1], [[i,i+1,i+3,i+4] for i in [0,1,3,4]] )]
 if all(x==m[0] for x in m) and not tuple(s) in z.keys():
  z[tuple(s)]=1;print '%i %i %i\n'*3 % tuple(s[0:3]+s[3:6]+s[6:9])

De-golfé

# each magic square is an array of 9 numbers
#
#for example [1 9 3 7 2 5 6 4 8] 
#
#represents the following square
#
#1 9 3
#7 2 5
#6 4 8
#
# to generate a random square with each number represented only once,
# start with [1 2 3 4 5 6 7 8 9] and sort, but use a random comparison
# function so the sorting process becomes instead a random permutation.
# 
# to check each 2x2 subsquare for sums, look at the indexes into the
# array: [[0,1,3,4] = upper left,[1,2,4,5] = upper right, etc.
#
# to keep track of already-printed magic squares, use a dictionary    
# (associative array) where the 9-element array data is the key. 

from random import *
def magic(s):
 quads=[]
 for a,b,c,d in [[0,1,3,4],[1,2,4,5],[3,4,6,7],[4,5,7,8]]:
  quads+=[s[a:b+1]+s[c:d+1]]
 summ=[sum(q) for q in quads]
 same= all(x==summ[0] for x in summ)
 #print quads
 #print 'sum',summ
 #print 'same',same
 return same

magicsquares={}
while len(magicsquares.keys())<376:
        sq = sorted(range(1,10),key=lambda x:random())
        if magic(sq) and not magicsquares.has_key(tuple(sq)):
                magicsquares[tuple(sq)]=1
                print sq[0:3],'\n',sq[3:6],'\n',sq[6:9],'\n'

Rien d'aléatoire ne doit se produire. Il existe exactement 376 solutions carrées distinctes et vous devez générer chacune d'elles exactement une fois.
Calvin's Hobbies

j'ai imprimé exactement 376 solutions carrées distinctes, et j'ai sorti chacune d'elles exactement une fois. l'aléatoire n'est pas interdit dans la description, ni dans les «échappatoires standard» meta.codegolf.stackexchange.com/questions/1061/…
don bright

D'accord, assez juste.
Calvin's Hobbies

Vous pouvez utiliser un générateur de nombres aléatoires pire tant qu'il vous donne tous les carrés dont vous avez besoin.
lirtosiast

1

Rubis 133

a=[]
[*1..9].permutation{|x|[0,1,3,4].map{|i|x[i]+x[i+1]+x[i+3]+x[i+4]}.uniq.size<2&&a<<x.each_slice(3).map{|s|s*' '}*'
'}
$><<a*'

'

Approche directe de la force brute. Testez-le ici .


0

J, 83 octets

([:;@,(<LF),.~[:(<@(LF,~":)"1@#~([:*/2=/\[:,2 2+/@,;._3])"2)(3 3)($"1)1+!A.&i.])@9:

Il s'agit d'une fonction qui génère une chaîne contenant les 376 carrés robustes. Utilise la force brute, génère toutes les permutations de 1 à 9, forme chacune en un tableau 3x3 et le filtre en vérifiant si les sommes de chaque sous-réseau 2x2 sont égales. Termine en une demi-seconde.

Usage

   f =: ([:;@,(<LF),.~[:(<@(LF,~":)"1@#~([:*/2=/\[:,2 2+/@,;._3])"2)(3 3)($"1)1+!A.&i.])@9:
   $ f ''  NB. A function has to take something to be invoked,
           NB. but in this case it is not used by the function
   37 {. f ''  NB. Take the first 37 characters
1 5 3
9 8 7
4 2 6

1 5 6
8 7 3
4 2 9

   _38 {. f ''  NB. Take the last 38 characters
9 5 4
2 3 7
6 8 1

9 5 7
1 2 3
6 8 4


   NB. The output string ends with two newlines
En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.