Propriété matricielle X revisitée (ou la joie de X)


11

Ce défi est en partie un défi d'algorithmes, en partie un défi d'optimisation et en partie simplement un défi de code le plus rapide.

La matrice AT est entièrement spécifiée par sa première ligne ret sa première colonne c. Chaque élément restant de la matrice n'est qu'une copie de l'élément en diagonale vers le haut et vers la gauche. C'est ça M[i,j] = M[i-1,j-1]. Nous autoriserons des matrices T qui ne sont pas carrées. Nous supposons cependant toujours que le nombre de lignes n'est pas supérieur au nombre de colonnes. Par exemple, considérons la matrice 3 x 5 T suivante.

10111
11011
11101

Nous disons qu'une matrice a la propriété X si elle contient deux ensembles de colonnes non vides avec des indices non identiques qui ont la même somme (vectorielle). La somme vectorielle d'une ou plusieurs colonnes est simplement une somme par élément de leurs colonnes. C'est la somme de deux colonnes ou plus contenant des xéléments, chacune étant une autre colonne contenant des xéléments. La somme d'une colonne est trivialement la colonne elle-même.

La matrice ci-dessus a trivialement la propriété X car les première et dernière colonnes sont les mêmes. La matrice d'identité n'a jamais la propriété X.

Si nous supprimons simplement la dernière colonne de la matrice ci-dessus, nous obtenons un exemple qui n'a pas la propriété X et donnerait un score de 4/3.

1011
1101
1110

La tâche

La tâche consiste à écrire du code pour trouver la matrice T ayant le score le plus élevé avec des entrées binaires et qui n'a pas la propriété X. Pour plus de clarté, une matrice avec des entrées binaires a la propriété que chacune de ses entrées est soit 0 soit 1.

But

Votre score sera le nombre de colonnes divisé par le nombre de lignes de votre matrice de meilleur score.

Tie break

Si deux réponses ont le même score, celle soumise en premier l'emporte.

Dans le cas (très) peu probable où quelqu'un trouverait une méthode pour obtenir des scores illimités, la première preuve valable d'une telle solution sera acceptée. Dans le cas encore plus improbable où vous pouvez trouver une preuve d'optimalité d'une matrice finie, j'attribuerai bien sûr également la victoire.

Allusion

Toutes les réponses à la matrice Trouver le score le plus élevé sans propriété X sont valables ici, mais elles ne sont pas optimales. Il existe des matrices T sans propriété X qui ne sont pas cycliques.

Par exemple, il existe une matrice 7 x 12 T sans propriété X mais aucune matrice cyclique de ce type.

Le 21/11 battrait toutes les réponses actuelles de cela et du défi précédent.

Langues et bibliothèques

Vous pouvez utiliser n'importe quelle langue disposant d'un compilateur / interprète / etc disponible gratuitement. pour Linux et toutes les bibliothèques qui sont également disponibles gratuitement pour Linux.

Bonus La première réponse avec un score supérieur à 2 obtient une récompense immédiate de 200 points . Ton Hospel a maintenant atteint cet objectif!


Tableau actuel des leaders

  • C ++ . Score 31/15 par Ton Hospel
  • Java . Score 36/19 par Peter Taylor
  • Haskell . Score 14/8 par alexander-brett

Par «deux ensembles de colonnes non vides avec des indices non identiques», vous voulez dire deux ensembles de colonnes disjoints? Ou, pour reformuler, est-ce que {1, 3}, {1, 5} sont deux sous-ensembles de colonnes valides?
pawel.boczarski

@ pawel.boczarski Non pas disjoint. Juste non identique. Donc, {1, 3}, {1, 5} est valide.

D'accord. Qu'en est-il de M [i, 1] - s'agit-il d'un «emprunt» de la dernière colonne de M [i-1] (zéro n'est pas un index de colonne de matrice valide)? Et en fait, c'est "haut et gauche" plutôt que "haut et droite".
pawel.boczarski

@ pawel.boczarski "droite" était une faute de frappe. Merci. La première ligne et la première colonne peuvent être définies comme vous le souhaitez. Ils définissent tout le reste de la matrice. Est-ce que ça répond à votre question?

OK j'ai compris. Ce fut ma faute de ne pas avoir lu attentivement que la première colonne est également définie.
pawel.boczarski

Réponses:


6

C ++, Score 23/12 25/13 27/14 28/14 31/15

Enfin un résultat avec un ratio> 2:

rows=15,cols=31
1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 1 0 
1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 1 
1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 
1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 
1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 
0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 
0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 
1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 
0 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 
0 0 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 
0 0 0 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 
1 0 0 0 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 
0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 
0 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 
1 0 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 

J'ai complètement exploré 1 à 14 rangées. 15 serait trop long à explorer complètement. Les résultats sont:

1/1   = 1
2/2   = 1
4/3   = 1.333
5/4   = 1.25
7/5   = 1.4
9/6   = 1.5
12/7  = 1.714
14/8  = 1.75
16/9  = 1.778
18/10 = 1.8
20/11 = 1.818
23/12 = 1.917
25/13 = 1.923
28/14 = 2

Le code ci-dessous est une ancienne version du programme. La dernière version est à https://github.com/thospel/personal-propertyX .

/*
  Compile using something like:
    g++ -Wall -O3 -march=native -fstrict-aliasing -std=c++11 -g propertyX.cpp -lpthread -o propertyX
*/
#include <cstdint>
#include <climits>
#include <ctgmath>
#include <iostream>
#include <vector>
#include <array>
#include <chrono>
#include <mutex>
#include <atomic>
#include <thread>

using namespace std;

const int ELEMENTS = 2;

using uint    = unsigned int;
using Element = uint64_t;
using Column  = array<Element, ELEMENTS>;
using Set     = vector<Column>;
using Sum     = uint8_t;
using Index   = uint32_t;
using sec = chrono::seconds;

int const PERIOD = 5*60;
int const MAX_ROWS = 54;
int const COL_FACTOR = (MAX_ROWS+1) | 1;                // 55
int const ROW_ZERO   = COL_FACTOR/2;                    // 27
int const ROWS_PER_ELEMENT = CHAR_BIT * sizeof(Element) / log2(COL_FACTOR); //11
Element constexpr ELEMENT_FILL(Element v = ROW_ZERO, int n = ROWS_PER_ELEMENT) {
    return n ? ELEMENT_FILL(v, n-1) * COL_FACTOR + v : 0;
}
Element constexpr POWN(Element v, int n) {
    return n ? POWN(v, n-1)*v : 1;
}
Element const ELEMENT_TOP = POWN(COL_FACTOR, ROWS_PER_ELEMENT -1);
int const MAX_COLS = ROWS_PER_ELEMENT * ELEMENTS;       // 22

atomic<Index> col_next;
atomic<uint>  period;
chrono::steady_clock::time_point start;
mutex period_mutex;

uint ratio_row;
uint ratio_col;
mutex ratio_mutex;

auto const nr_threads = thread::hardware_concurrency();
// auto const nr_threads = 1;

struct State {
    State(uint cols);
    void process(Index i);
    void extend(uint row);
    void print(uint rows);
    Index nr_columns() const { return static_cast<Index>(1) << cols_; }

    Column last_;
    Element top_;
    int top_offset_;
    uint ratio_row_ = 0;
    uint ratio_col_ = 1;
    uint cols_;
    array<Sum, MAX_ROWS + MAX_COLS -1> side;
    vector<Set> sets;
};

ostream& operator<<(ostream& os, Column const& column) {
    for (int i=0; i<ELEMENTS; ++i) {
        auto v = column[i];
        for (int j=0; j<ROWS_PER_ELEMENT; ++j) {
            auto bit = v / ELEMENT_TOP;
            cout << " " << bit;
            v -= bit * ELEMENT_TOP;
            v *= COL_FACTOR;
        }
    }
    return os;
}

State::State(uint cols) : cols_{cols} {
    sets.resize(MAX_ROWS+2);
    for (int i=0; i<2; ++i) {
        sets[i].resize(2);
        for (int j=0; j < ELEMENTS; ++j) {
            sets[i][0][j] =  ELEMENT_FILL();
            sets[i][1][j] =  static_cast<Element>(-1) - ELEMENT_FILL(1);
        }
    }
    top_ = POWN(COL_FACTOR, (cols_-1) % ROWS_PER_ELEMENT);
    top_offset_ = ELEMENTS - 1 - (cols_-1) / ROWS_PER_ELEMENT;
}

void State::print(uint rows) {
    for (auto c=0U; c<cols_;c++) {
        for (auto r=0U; r<rows;r++) {
            cout << static_cast<int>(side[cols_-c+r-1]) << " ";
        }
        cout << "\n";
    }
    cout << "----------" << endl;
}

void check(uint cols, uint t) {
    State state(cols);

    Index nr_columns = state.nr_columns();
    while (1) {
        Index col = col_next++;
        if (col >= nr_columns) break;
        state.process(col);

        auto now = chrono::steady_clock::now();
        auto elapsed = chrono::duration_cast<sec>(now-start).count();
        if (elapsed >= period) {
            lock_guard<mutex> lock{period_mutex};
            if (elapsed >= period) {
                cout << "col=" << col << "/" << nr_columns << " (" << 100.*col/nr_columns << "% " << elapsed << " s)" << endl;
                period = (elapsed/PERIOD+1)*PERIOD;
            }
        }
    }
}

void State::process(Index col) {
    last_.fill(0);
    for (uint i=0; i<cols_; ++i) {
        Element bit = col >> i & 1;
        side[i] = bit;
        Element carry = 0;
        for (int j=0; j<ELEMENTS; ++j) {
            auto c = last_[j] % COL_FACTOR;
            last_[j] = last_[j] / COL_FACTOR + carry * ELEMENT_TOP;
            if (j == top_offset_ && bit) last_[j] += top_;
            carry = c;
        }
    }
    // cout << "col=" << col << ", value=" << last_ << "\n";
    extend(0);
}

void State::extend(uint row) {
    // cout << "Extend row " << row << " " << static_cast<int>(side[cols_+row-1]) << "\n";
    if (row >= MAX_ROWS) throw(range_error("row out of range"));

    // Execute subset sum. The new column is added to set {from} giving {to}
    // {sum} is the other set.
    auto const& set_from = sets[row];
    auto const& set_sum  = sets[row + 1];
    auto      & set_to   = sets[row + 2];
    if (set_to.size() == 0) {
        auto size = 3 * set_from.size() - 2;
        set_to.resize(size);
        for (int j=0; j<ELEMENTS; ++j)
            set_to[size-1][j] = static_cast<Element>(-1) - ELEMENT_FILL(1);
    }

    // Merge sort {set_from - last_} , {set_from} and {set_from + last_}
    auto ptr_sum    = &set_sum[1][0];
    auto ptr_low    = &set_from[0][0];
    auto ptr_middle = &set_from[0][0];
    auto ptr_high   = &set_from[0][0];
    Column col_low, col_high;
    for (int j=0; j<ELEMENTS; ++j) {
        col_low   [j] = *ptr_low++  - last_[j];
        col_high  [j] = *ptr_high++ + last_[j];
    }

    auto ptr_end = &set_to[set_to.size()-1][0];
    auto ptr_to  = &set_to[0][0];
    while (ptr_to < ptr_end) {
        for (int j=0; j<ELEMENTS; ++j) {
            if (col_low[j] < ptr_middle[j]) goto LOW;
            if (col_low[j] > ptr_middle[j]) goto MIDDLE;
        }
        // low == middle
        // cout << "low == middle\n";
        return;

      LOW:
        // cout << "LOW\n";
        for (int j=0; j<ELEMENTS; ++j) {
            if (col_low[j] < col_high[j]) goto LOW0;
            if (col_low[j] > col_high[j]) goto HIGH0;
        }
        // low == high
        // cout << "low == high\n";
        return;

      MIDDLE:
        // cout << "MIDDLE\n";
        for (int j=0; j<ELEMENTS; ++j) {
            if (ptr_middle[j] < col_high[j]) goto MIDDLE0;
            if (ptr_middle[j] > col_high[j]) goto HIGH0;
        }
        // middle == high
        // cout << "middle == high\n";
        return;

      LOW0:
        // cout << "LOW0\n";
        for (int j=0; j<ELEMENTS; ++j) {
            *ptr_to++  = col_low[j];
            col_low[j] = *ptr_low++ - last_[j];
        }
        goto SUM;

      MIDDLE0:
        // cout << "MIDDLE0\n";
        for (int j=0; j<ELEMENTS; ++j)
            *ptr_to++ = *ptr_middle++;
        goto SUM;

      HIGH0:
        // cout << "HIGH0\n";
        for (int j=0; j<ELEMENTS; ++j) {
            *ptr_to++ = col_high[j];
            col_high[j] = *ptr_high++ + last_[j];
        }
        goto SUM;
      SUM:
        for (int j=-ELEMENTS; j<0; ++j) {
            if (ptr_to[j] > ptr_sum[j]) {
                ptr_sum += ELEMENTS;
                goto SUM;
            }
            if (ptr_to[j] < ptr_sum[j]) goto DONE;
        }
        // sum == to
        for (int j=-ELEMENTS; j<0; ++j)
            if (ptr_to[j] != ELEMENT_FILL()) {
                // sum == to and to != 0
                // cout << "sum == to\n";
                // cout << set_sum[(ptr_sum - &set_sum[0][0])/ELEMENTS-1] << "\n";
                return;
            }
      DONE:;
    }
    // cout << "Wee\n";
    auto row1 = row+1;
    if (0)
        for (uint i=0; i<row1+2; ++i) {
            cout << "Set " << i << "\n";
            auto& set = sets[i];
            for (auto& column: set)
                cout << column << "\n";
        }

    if (row1 * ratio_col_ > ratio_row_ * cols_) {
        ratio_row_ = row1;
        ratio_col_ = cols_;
        lock_guard<mutex> lock{ratio_mutex};

        if (ratio_row_ * ratio_col > ratio_row * ratio_col_) {

            auto now = chrono::steady_clock::now();
            auto elapsed = chrono::duration_cast<sec>(now-start).count();
            cout << "cols=" << cols_ << ",rows=" << row1 << " (" << elapsed << " s)\n";
            print(row1);
            ratio_row = ratio_row_;
            ratio_col = ratio_col_;
        }
    }

    auto last = last_;

    Element carry = 0;
    for (int j=0; j<ELEMENTS; ++j) {
        auto c = last_[j] % COL_FACTOR;
        last_[j] = last_[j] / COL_FACTOR + carry * ELEMENT_TOP;
        carry = c;
    }

    side[cols_+row] = 0;
    extend(row1);

    last_[top_offset_] += top_;
    side[cols_+row] = 1;
    extend(row1);

    last_ = last;
}

void my_main(int argc, char** argv) {
    if (!col_next.is_lock_free()) cout << "col_next is not lock free\n";
    if (!period.  is_lock_free()) cout << "period is not lock free\n";

    int min_col = 2;
    int max_col = MAX_COLS;
    if (argc > 1) {
        min_col = atoi(argv[1]);
        if (min_col < 2)
            throw(range_error("Column must be >= 2"));
        if (min_col > MAX_COLS)
            throw(range_error("Column must be <= " + to_string(MAX_COLS)));
    }
    if (argc > 2) {
        max_col = atoi(argv[2]);
        if (max_col < min_col)
            throw(range_error("Column must be >= " + to_string(min_col)));
        if (max_col > MAX_COLS)
            throw(range_error("Column must be <= " + to_string(MAX_COLS)));
    }

    for (int cols = min_col; cols <= max_col; ++cols) {
        cout << "Trying " << cols << " columns" << endl;
        ratio_row = 0;
        ratio_col = 1;
        col_next = 0;
        period = PERIOD;
        start = chrono::steady_clock::now();
        vector<thread> threads;
        for (auto t = 1U; t < nr_threads; t++)
            threads.emplace_back(check, cols, t);
        check(cols, 0);
        for (auto& thread: threads)
            thread.join();
    }
}

int main(int argc, char** argv) {
    try {
        my_main(argc, argv);
    } catch(exception& e) {
        cerr << "Error: " << e.what() << endl;
        exit(EXIT_FAILURE);
    }
    exit(EXIT_SUCCESS);
}

C'est bien. Le grand mystère est de savoir si vous pouvez obtenir un score de 2.

Par extrapolation, 28/14 devrait exister, je pense, ce qui serait vraiment excitant. Mais est-ce juste hors de portée?

n = 14 prendrait environ 200 jours avec mon code actuel sur mon processeur 8 cœurs. Le code peut probablement être accéléré d'environ 30%. Après cela, je n'ai plus d'idées. Et votre extrapolation semble de toute façon plutôt optimiste ...
Ton Hospel

Je pense que la matrice circulante 50 par 25 avec la première ligne 01011011100010111101000001100111110011010100011010 pourrait fonctionner. Cela a été trouvé par une heuristique d'optimisation qui pourrait être utile.

140 heures pour une couverture exhaustive de n = 14 est très rapide, je dois dire.

2

Haskell 14/8 = 1,75

1 1 0 0 0 1 0 1 1 0 1 1 0 0
1 1 1 0 0 0 1 0 1 1 0 1 1 0
0 1 1 1 0 0 0 1 0 1 1 0 1 1
1 0 1 1 1 0 0 0 1 0 1 1 0 1
0 1 0 1 1 1 0 0 0 1 0 1 1 0
0 0 1 0 1 1 1 0 0 0 1 0 1 1
0 0 0 1 0 1 1 1 0 0 0 1 0 1
0 0 0 0 1 0 1 1 1 0 0 0 1 0

Auparavant 9/6 = 1,5

1 0 1 0 1 1 0 0 1
1 1 0 1 0 1 1 0 0
1 1 1 0 1 0 1 1 0
1 1 1 1 0 1 0 1 1
1 1 1 1 1 0 1 0 1
1 1 1 1 1 1 0 1 0

J'ai écrit ceci, puis j'ai regardé les réponses à l'autre question et j'ai été ... découragé.

import Data.List
import Data.Hashable
import Control.Monad
import Control.Parallel.Strategies
import Control.Parallel
import qualified Data.HashSet as S

matrix§indices = [ matrix!!i | i<-indices ]

powerset :: [a] -> [[a]]
powerset = filterM (const [True, False])

hashNub :: (Hashable a, Eq a) => [a] -> [a]
hashNub l = go S.empty l
    where
      go _ []     = []
      go s (x:xs) = if x `S.member` s
        then go s xs
        else x : go (S.insert x s) xs

getMatrix :: Int -> Int -> [Int] -> [[Int]]
getMatrix width height vector = [ vector § [x..x+width-1] | x<-[0..height-1] ]

hasDuplicate :: (Hashable a, Eq a) => [a] -> Bool
hasDuplicate m = go S.empty m
    where
        go _ [] = False
        go s (x:xs) = if x `S.member` s
            then True
            else go (S.insert x s) xs

hasProperty :: [[Int]] -> Bool
hasProperty matrix =
    let
        base = replicate (length (matrix !! 0)) 0::[Int]
    in
        if elem base matrix then
            False
        else
            if hasDuplicate matrix then
                False
            else
                if hasDuplicate (map (foldl (zipWith (+)) base) (powerset matrix)) then
                    False
                else
                    True


pmap = parMap rseq

matricesWithProperty :: Int -> Int -> [[[Int]]]
matricesWithProperty n m =
    let
        base = replicate n 0::[Int]
    in
    filter (hasProperty) $
    map (getMatrix n m) $
    sequence [ [0,1] | x<-[0..n+m-1] ]

firstMatrixWithProperty :: Int -> Int -> [[Int]]
firstMatrixWithProperty n m = head $ matricesWithProperty n m

main = mapM (putStrLn. show) $ map (firstMatrixWithProperty 8) [1..]

Je vous remercie! Une réponse Haskell est toujours la bienvenue. Je pense que le premier cas intéressant est 12/7. Pouvez-vous comprendre cela?

Je l'exécutais sur un ordinateur portable dual-core 2009, donc non :) Je vais réessayer sur une machine plus rapide
alexander-brett

Très agréable. Je viens d'ajouter un commentaire selon lequel le 21/11 battrait toutes les réponses précédentes.

Pourriez-vous expliquer ce que votre code produit exactement, s'il vous plaît?

Dans main, le nombre (dans ce cas 8) est la hauteur de la matrice, et le programme parcourt les largeurs [1..]. Pour chaque combinaison hauteur / largeur, il imprime un tableau de colonnes d'une matrice valide.
alexander-brett

1

C

Voici une réponse qui fonctionne et est nettement plus efficace en mémoire que le Haskell. Malheureusement, mon ordinateur est encore trop lent pour atteindre mieux que 14/8 dans une durée raisonnable.

Essayez de compiler gcc -std=c99 -O2 -fopenmp -o matrices.exe matrices.cet d'exécuter avec matrices.exe width heightou similaire. La sortie est un entier dont les bits forment la base de la matrice en question, par exemple:

$ matrices.exe 8 14
...
valid i: 1650223

Alors, puisque 1650223 = 0b110010010111000101111, la matrice en question est:

0 0 1 1 1 0 1 0 0 1 0 0 1 1
0 ...
1 ...
0
1
1
1
1

Si quelqu'un avec 8 cœurs et du temps à disposition veut exécuter cela pendant un certain temps, je pense que de bonnes choses pourraient en résulter :)


#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

/*
 * BEGIN WIKIPEDIA CODE
 */
const long long m1  = 0x5555555555555555; //binary: 0101...
const long long m2  = 0x3333333333333333; //binary: 00110011..
const long long m4  = 0x0f0f0f0f0f0f0f0f; //binary:  4 zeros,  4 ones ...
const long long m8  = 0x00ff00ff00ff00ff; //binary:  8 zeros,  8 ones ...
const long long m16 = 0x0000ffff0000ffff; //binary: 16 zeros, 16 ones ...
const long long m32 = 0x00000000ffffffff; //binary: 32 zeros, 32 ones
const long long hff = 0xffffffffffffffff; //binary: all ones
const long long h01 = 0x0101010101010101; //the sum of 256 to the power of 0,1,2,3...
//This uses fewer arithmetic operations than any other known
//implementation on machines with fast multiplication.
//It uses 12 arithmetic operations, one of which is a multiply.
long long hamming(long long x) {
    x -= (x >> 1) & m1;             //put count of each 2 bits into those 2 bits
    x = (x & m2) + ((x >> 2) & m2); //put count of each 4 bits into those 4 bits
    x = (x + (x >> 4)) & m4;        //put count of each 8 bits into those 8 bits
    return (x * h01)>>56;  //returns left 8 bits of x + (x<<8) + (x<<16) + (x<<24) + ...
}
/*
 * END WIKIPEDIA CODE
 */

int main ( int argc, char *argv[] ) {
    int height;
    int width;

    sscanf(argv[1], "%d", &height);
    sscanf(argv[2], "%d", &width);

    #pragma omp parallel for
    for (
        /*
         * We know that there are 2^(h+w-1) T-matrices, defined by the entries
         * in the first row and first column. We'll let the long long i
         * represent these entries, with 1s represented by set bits.
         *
         * The first (0) and last (1) matrix we will ignore.
         */
        long long i = 1;
        i < (1 << (height+width-1))-1;
        i++
    ) {
        // Flag for keeping track as we go along.
        int isvalid = 1;

        /*
         * Start by representing the matrix as an array of columns, with each
         * non-zero matrix entry as a bit. This allows us to construct them and
         * check equality very quickly.
         */
        long *cols = malloc(sizeof(long)*width);
        long colmask = (1 << height)-1;
        for (int j = 0; j < width; j++) {
            cols[j] = (i >> j) & colmask;
            if (cols[j] == 0) {
                //check no zero rows
                isvalid = 0;
            } else {
                //check no duplicate rows
                for (int k = 0; k < j; k++) {
                    if (cols[j] == cols[k]) {
                        isvalid = 0;
                    }
                }
            }
        }

        if (isvalid == 1) {
            /*
             * We'll also represent the matrix as an array of rows, in a
             * similar manner.
             */
            long *rows = malloc(sizeof(long)*height);
            long rowmask = (1 << width)-1;
            for (int j = 0; j < height; j++) {
                rows[j] = (i >> j) & rowmask;
            }

            int *sums[(1 << width)];
            for (long j = 0; j < 1<<width; j++) {
                sums[j] = (int*)malloc(sizeof(int)*height);
            }

            for (
                /*
                 * The powerset of columns has size 2^width. Again with the
                 * long; this time each bit represents whether the
                 * corresponding row is a member of the subset. The nice thing
                 * about this is we can xor the permutation with each row,
                 * then take the hamming number of the resulting number to get
                 * the sum.
                 */
                long permutation = 1;
                (isvalid == 1) && (permutation < (1 << width)-1);
                permutation ++
            ) {
                for (int j = 0; j < height; j++) {
                    sums[permutation][j] = hamming( rows[j] & permutation);
                }
                for (int j = permutation-1; (isvalid == 1) && (j > -1); j--) {
                    if (memcmp(sums[j], sums[permutation], sizeof(int)*height) == 0) {
                        isvalid = 0;
                    }
                }
            }

            for (long j = 0; j < 1<<width; j++) {
                free(sums[j]);
            }

            free(rows);

        }

        if (isvalid == 1) {
            printf ("valid i: %ld\n", i);
        }

        free(cols);
    }

    return 0;
}

J'obtiens alexander-brett.c: Dans la fonction 'main': alexander-brett.c: 107: 21: avertissement: déclaration implicite de la fonction 'memcmp' [-Wimplicit-function-declaration] if (memcmp (sommes [j], somme [permutation], taille de (int) * hauteur) == 0) {^ alexander-brett.c: 122: 13: avertissement: le format '% ld' attend un argument de type 'long int', mais l'argument 2 a le type ' long long int '[-Wformat =] printf ("valide i:% ld \ n", i);

Combien de temps prend ./alexander-brett 8 14 pour vous?

Salut Lembik, 8 14 ont obtenu 5 réponses en une heure pour moi sur une machine quad core. J'ai réussi à compiler avec ces en-têtes sur Windows, ce serait plus étrange si memcmp manquait ...
alexander-brett


J'ai essayé votre code avec 7 12 et l'une des réponses qu'il produit est valid i: 7481. Dans python bin (7481) est 0b1110100111001 qui n'est pas assez long. Une idée de ce qui se passe?
En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.