Python 3, 457 316 306 octets
E=enumerate
V={'+'}
Q=[[(-j,i,k)for i,u in E(open(0))for j,v in E(u)for k in[{v}&V,'join'][u[j:j+2]=='|-']]]
while Q:
a,b,c,d,*e=A=tuple(x//2for y,x in sorted((y,x)for x,y in E(Q.pop())));e or exit('NOT')
if{A}-V:V|={A};Q+=[[c,d,a,b]+e,A,A[2:]+A[:2]][a<c<b<d:][c<a<d<b:]
if b==d:Q=[[a,c]+e]
exit('KNOT')
Hein?
Le programme convertit d'abord le nœud en diagramme rectangulaire, qui présente les restrictions suivantes:
- Deux segments verticaux ou horizontaux ne se trouvent pas sur la même ligne.
- Aucun segment vertical ne traverse un segment horizontal.
Par exemple, le premier cas de test est converti en diagramme rectangulaire suivant:
+-----------+
| |
| | +-------+
| | | |
| +-------+ | | |
| | | | | |
| | +---+ | |
| | | | | |
| | | +---+ |
| | | |
| | | +-------+
| | | | | |
+-----+ | | | |
| | | | | |
| +---+ | | |
| | | | | |
| | +-------------+ | |
| | | | | |
| | | +---+ |
| | | | | |
| | | | +---+
| | | |
+-+ | |
| |
+-+
que nous représentons uniquement par la suite des coordonnées y des segments verticaux, de droite à gauche:
(5,10, 1,9, 8,10, 9,12, 5,12, 1,4, 0,3, 2,4, 3,7, 6,8, 7,11, 2,11, 0,6)
Il cherche ensuite des simplifications du diagramme rectangulaire décrites dans Ivan Dynnikov, «Présentations de liens en arc. Simplification monotone ”, 2004 . Dynnikov a prouvé que, quel que soit le diagramme rectangulaire du dénouement, il existe une séquence de mouvements simplifiants qui se terminent au diagramme trivial. En bref, les mouvements autorisés incluent:
- Permuter cycliquement les segments verticaux (ou horizontaux);
- Permutation de segments verticaux (ou horizontaux) consécutifs sous certaines contraintes de configuration.
- Remplacement de trois sommets adjacents situés dans le coin même du diagramme par un sommet.
Voir le papier pour les images. Ce n'est pas un théorème évident; cela ne tient pas si, par exemple, Reidemeister utilise des mouvements qui n'augmentent pas le nombre de passages à niveau. Mais pour les types particuliers de simplifications ci-dessus, cela s'avère être vrai.
(Nous simplifions la mise en œuvre en ne permutant que les segments verticaux, mais en permettant également de transposer tout le nœud pour un échange horizontal avec vertical.)
Démo
$ python3 knot.py <<EOF
+-------+ +-------+
| | | |
| +---|----+ +-------+
| | | | | |
+-------|------------|---+
| | | |
+---+ +---+
EOF
KNOT
$ python3 knot.py <<EOF
+----------+
| |
| +--------------+
| | | |
| | +-|----+ |
| | | | | |
| +-----+ | |
| | | |
| +------|---+
| |
+---------------+
EOF
NOT
$ python3 knot.py <<EOF # the Culprit
+-----+
| |
+-----------+ |
| | | |
| +-+ | +---|-+
| | | | | | | |
| +-|-------+ | |
| | | | | | | |
+-|-+ | | +---+ |
| | | |
+---|---------+
| |
+-+
EOF
NOT
$ python3 knot.py <<EOF # Ochiai unknot
+-----+
| |
+-|---------+
| | | |
| | +-+ | |
| | | | | |
+-|-|---|-|-+ |
| | | | | | | |
| | | +---|---+
| | | | | |
+-------+ | |
| | | |
| +-------+
| |
+-------+
EOF
NOT
$ python3 knot.py <<EOF # Ochiai unknot plus trefoil
+-----+ +-----+
| | | |
+-|---------+ |
| | | | | |
| | +-+ | +---+ |
| | | | | | | |
+-|-|---|-|-+ +---+
| | | | | | | |
| | | +---|-----+
| | | | | |
+-------+ | |
| | | |
| +-------+
| |
+-------+
EOF
KNOT
$ python3 knot.py <<EOF # Thistlethwaite unknot
+---------+
| |
+---+ +---------+
| | | | | |
| +-------+ | |
| | | | | |
| | | +---+ |
| | | | | |
| | +-------+ |
| | | | | |
| +-------+ | |
| | | | | |
+-----------+ | | | |
| | | | | |
| +-----------+ | | |
| | | | | |
| | +-------------+ |
| | | |
| | +-----+
| | | |
| | +---+
| | | |
+---------------------+ |
| |
+---------------------+
EOF
NOT
$ python3 knot.py <<EOF # (−3,5,7)-pretzel knot
+-------------+
| |
+-|-----+ |
| | | |
+-|-+ +-------+ |
| | | | | |
+-|-+ +---+ +---+
| | | | | |
| | +---+ +---+
| | | | | |
| | +---+ +---+
| | | | | |
| +---+ +---+
| | | |
| | +---+
| | | |
| | +---+
| | | |
| +---+
| |
+-----+
EOF
KNOT
$ python3 knot.py <<EOF # Gordian unknot
+-------------+ +-------------+
| | | |
| +---------+ | | +---------+ |
| | | | | | | |
| | +-------------+ +-------------+ | |
| | | | | | | | | | | |
| | | +---------+ | | +---------+ | | |
| | | | | | | | | | | | | | | |
| +-------+ | +-------+ +-------+ | +-------+ |
| | | | | | | | | | | | | | | |
+-------+ | +-------+ | | +-------+ | +-------+
| | | | | | | | | | | | | | | |
| +-------+ | | | | | | | | +-------+ |
| | | | | | | | | | | | | | | |
+-------+ | | | | | | | | | | +-------+
| | | | | | | | | | | | | | | |
| +-----+ | | | | | | +-----+ |
| | | | | | | | | | | |
+---------+ | | | | +---------+
| | | | | | | |
+---------+ | | +---------+
| | | | | | | |
| | +-----------------+ | |
| | | | | |
| +---------------------+ |
| | | |
+-----------+ +-----------+
EOF
NOT