Placement de cuirassé paresseux


39

Imaginez le scénario suivant: vous jouez à des cuirassés avec un ami mais décidez de tricher. Plutôt que de déplacer un navire après qu'il ait abattu votre navire là où vous vous trouviez, vous décidez de ne placer aucun navire. Vous lui dites que tous ses coups sont ratés, jusqu'à ce qu'il soit impossible de placer les navires de cette manière.

Vous devez écrire une fonction, ou un programme complet, qui prend en quelque sorte 3 arguments: la taille du champ, une liste des quantités de tailles de vaisseaux et une liste de plans.

Champ de bataille

L'un des paramètres donnés est la taille du tableau. Le champ de bataille est un carré de cellules, et le paramètre donné est simplement un côté du carré.
Par exemple, voici un tableau de taille 5.

Les coordonnées du champ sont spécifiées en tant que chaîne à 2 composants: une lettre suivie d'un nombre. Vous pouvez compter sur les lettres dans certains cas.
Lettre spécifie la colonne, nombre spécifie la ligne de la cellule (indexé 1). Par exemple, dans l'image ci-dessus, la cellule en surbrillance est désignée par "D2".
Comme il n'y a que 26 lettres, le champ ne peut pas dépasser 26x26.

Navires

Les navires sont des lignes droites de 1 ou plusieurs blocs. La quantité de navires est spécifiée dans une liste, où le premier élément est la quantité de navires à une cellule, le deuxième - de navires à deux cellules, etc.
Par exemple, la liste [4,1,2,0,1]créerait l’ensemble de navires suivant:

Lorsqu'ils sont placés sur le champ de bataille, les navires ne peuvent pas se croiser ni même se toucher. Pas même avec les coins. Ils peuvent cependant toucher les bords du champ.
Vous trouverez ci-dessous un exemple de placement de navire valide:

Vous pouvez supposer que pour un ensemble de navires donné, il existe toujours un emplacement sur un tableau vide de taille donnée.

Sortie

Si de tels emplacements de navires existent, vous devez en générer un.
Le programme doit générer une matrice de caractères ascii séparés de 3 nouvelles lignes, une pour indiquer une cellule vide, une autre pour une pièce de navire et une autre pour une cellule marquée comme "manquante". Aucun autre caractère ne doit être sorti.
Par exemple,

ZZ@Z
\@@Z
@\\Z
\Z\\

(Dans cet exemple, j'ai défini @être une cellule vide, \une cellule "manquée" et Zune pièce du navire)

Si ce type de placement n'existe pas, le programme / la fonction doit revenir sans rien générer.

Contribution

Si vous décidez de créer un programme complet, c'est à vous de spécifier comment les listes sont entrées, certaines peuvent passer par des arguments, d'autres via stdin.

C'est le , le plus petit nombre de personnages gagne.

Vous trouverez ici un exemple de solution optimisée sans golf .
Compilez avec -std=c99, le premier argument est la taille du tableau, les autres arguments sont les tailles de navire. Une liste de plans séparés par une nouvelle ligne est donnée sur stdin. Exemple:
./a 4 1 1 1 <<< $'A2\nA4\nB3\nC3\nC4\D4'


26x26? J'ai esquissé une solution basée sur les expressions rationnelles et la récursivité, et elle devient extrêmement lente = inutilisable pour les champs plus que 6x6. Soit je fais quelque chose de très stupide, ou le manque de réponses signifie que les autres n'ont pas de succès aussi.
user2846289

Je viens d'écrire une implémentation en C, elle calcule instantanément pour au moins 10x10un ensemble de 4,3,2,1navires
mniip

@mniip: Avez-vous un moyen spécifique de traiter les cas difficiles (grand tableau, nombreux navires, échouant à cause de la position des tirs)? Ou est-ce juste (un peu intelligent) force brute?
n̴̖̋h̷͉̃a̷̭̿h̸̡̅ẗ̵̨́d̷̰̀ĥ̷̳

Il a quelques optimisations, par exemple, tente de placer les petits navires en premier et exclut l’échange de navires de taille égale de la force brute. C'est un peu lent quand il y a beaucoup de navires sur un petit tableau presque vide.
Mniip

@ n̴̖̋h̷͉̃a̷̭̿h̸̡̅ẗ̵̨́d̷̰̀ĥ̷̳ J'ai ajouté un exemple de lien de solution.
Mniip

Réponses:


2

GolfScript, 236 caractères

n%([~](:N):M;[.,,]zip{~[)]*~}%-1%:S;{(65-\~(M*+}%:H;{{M*+}+N,/}N,%H-S[]]]{(~\.{(:L;{{M*+{+}+L,%}+N)L-,/}N,%{.{.M/\M%M*+}%}%{3$&,L=},{:K[{..M+\M-}%{..)\(}%3$\- 1$3$K+]}%\;\;\;\+.}{;:R;;;0}if}do{{{M*+.H?)'!'*\R?)'#'*'.'++1<}+N,/n}N,%}R!!*

L'entrée est donnée sur STDIN. La première ligne contient la taille et le nombre de navires, chacun suivant les coordonnées de ligne d'un seul coup.

Exemple:

4 1 1 1
A2
A4
B3
C3
C4
D4

##.#
!..#
#!!#
!.!!

Je pensais que ce défi devrait également avoir au moins une réponse GolfScript. En fin de compte, il est devenu très dépourvu de sens en raison de l’algorithme utilisé, qui privilégie la performance à la brièveté.

Code annoté:

n%               # Split the input into lines
([~]             # The first line is evaluated to an array [N S1 S2 S3 ...]
(:N              # This happy smiley removes the first item and assigns it to variable N
):M;             # While this sad smiley increases N by one and assigns it to M

[.,,]zip         # For the rest of numbers in the first line create the array [[0 S1] [1 S2] [2 S3] ...]
{~[)]*~}%        # Each element [i Si] is converted into the list (i+1 i+1 ... i+1) with Si items. 
-1%:S;           # Reverse (i.e. largest ship first) and assign the list to variable S.
                 # The result is a list of ship lengths, e.g. for input 3 0 2 we have S = [3 3 1 1 1].

{                # On the stack remains a list of coordinates
  (65-           # Convert the letter from A,B,... into numeric value 0,1,...
  \~(            # The number value is decreased by one
  M*+            # Both are combined to a single index (M*row+col)
}%:H;            # The list of shots is then assigned to variable H

                 # The algorithm is recursive backtracking implemented using a stack of tuples [A S R] where
                 #   - A is the list of open squares
                 #   - S is a list of ships to be placed
                 #   - R is the list of positions where ships were placed                     

    {{           # initial A is the full space of possible coordinates
      M*+        #   combine row and column values into a single index
    }+N,/}N,%    # do the N*N loop
    H-           # minus all places where a shot was done already
    S            # initial S is the original list
    []           # initial R is the empty list (no ships placed yet)
  ]
]                # The starting point is pushed on the stack 

{                # Start of the loop running on the stack
  (~\            # Pop from the stack and extract items in order A R S

  .{             #   If S is non-empty

    (:L;         #     Take first item in S (longest ship) and asign its length to L

    {{M*+{+}+L,%}+N)L-,/}N,%{.{.M/\M%M*+}%}%
                 #     This lengthy expression just calculates all possible ship placements on a single board
                 #     (could be shortened by 3 chars if we don't respect board size but I find it clearer this way)

    {3$&,L=},    #     This step is just a filter on those placements. The overlap (&) with the list of open squares (3$) 
                 #     must be of size L, i.e. all coordinates must be free

                 #     Now we have possible placements. For each one generate the appropriate tuple (A* S* R*) for recursion
    {
      :K         #     Assign the possible new ship placement to temporary variable K
      [
        {..M+\M-}%
        {..)\(}% 
                 #       For each coordinate add the square one row above and below (first loop)
                 #       and afterwards for the resulting list also all squares left and right (second loop)
        3$\-     #       Remove all these squares from the list of available squares A in order to get the new A*
        1$       #       Reduced list of ships S* (note that the first item of S was already remove above)
        3$K+     #       Last item in tuple is R* = R + K, i.e. the ship's placements are added to the result
      ]
    }%           

    \;\;\;       #     Discard the original values A R S
    \+           #     Push the newly generated tuples on the stack
    .            #     Loop until the stack is empty

  }{             #   else

    ;:R;;;       #     Assign the solution to the variable R and remove all the rest from the stack. 
    0            #     Push a zero in order to break the loop

  }if            #   End if

}do              # End of the loop


{                # The output block starts here
  {{             
    M*+
    .H?)         #   Is the current square in the list of shots?
    '!'*         #     then take a number of '!' otherwise an empty string
    \R?)         #   Is the current square in the list of ships?
    '#'*         #     then take a number of '#' otherwise an empty string
    '.'++        #   Join both strings and append a '.'
    1<           #   Take the first item of the resulting string, i.e. altogether this is a simple if-else-structure
  }+N,/n}N,%     # Do a N*N loop
}
R!!*             # Run this block only if R was assigned something during the backtracking. 
                 # (!! is double-negation which converts any non-zero R into a one)
                 # Note: since the empty list from the algorithm is still on the stack if R wasn't assigned
                 # anything the operator !! works on the code block (which yields 1) which is then multiplied
                 # with the empty list.

6

SWI-Prolog, 536 441 1 octet

1 fin de ligne UNIX, nouvelle ligne finale non comptée

La version avec toutes les optimisations supprimées ( 441 octets):

:-[library(clpfd)].
m(G,L):-maplist(G,L).
l(L,A):-length(A,L).
y(A,E,(X,Y)):-nth1(X,A,R),nth1(Y,R,F),var(F),F=E.
a(A,S):-l(L,A),X#>0,X#=<L,Y#>0,Y#=<L,h(S,(X,Y),A).
h(0,_,_).
h(L,(X,Y),A):-(B=A;transpose(A,T),B=T),y(B,s,(X,Y)),M#=L-1,Z#=Y+1,h(M,(X,Z),B).
e([],_,[]).
e([H|R],I,O):-J#=I+1,e(R,J,P),l(H,Q),Q ins I,append(P,Q,O).
r(R):-m(c,R),nl.
c(E):-var(E)->put(@);put(E).
g(L,H,S):-l(L,A),m(l(L),A),m(y(A,\),S),e(H,1,G),!,m(a(A),G),!,m(r,A).

Étant donné que le code est modifié pour réduire le nombre d'octets, il n'acceptera plus une liste de plans comportant des doublons.


La version avec optimisation de base, entièrement golfée ( 536 → 506 octets)

:-[library(clpfd)].
m(G,L):-maplist(G,L).
l(L,A):-length(A,L).
x(A,I,E):-X=..[a|A],arg(I,X,E).
y(A,E,(X,Y)):-x(A,X,R),x(R,Y,E).
a(A,S):-l(L,A),X#>0,X#=<L,Y#>0,Y#=<L,(B=A;transpose(A,T),B=T),h(S,(X,Y),B).
h(0,_,_).
h(L,(X,Y),A):-y(A,E,(X,Y)),var(E),E=s,M#=L-1,Z#=Y+1,h(M,(X,Z),A).
e([],_,[]).
e([H|R],I,O):-J#=I+1,e(R,J,P),l(H,Q),Q ins I,append(P,Q,O).
r(R):-m(c,R),nl.
c(E):-var(E)->put(@);put(E).
g(L,H,S):-l(L,A),m(l(L),A),sort(S,T),m(y(A,\),T),e(H,1,G),!,l(E,T),sumlist(G,D),L*L-E>=D,m(a(A),G),!,m(r,A).

J'implémente quelques vérifications de base ( nombre de blocs de navires nécessaires ) pour accélérer la sortie du code dans des cas clairement impossibles. Le code est également immunisé contre les doublons dans la liste des prises de vues jusqu'à présent.


Ci-dessous, la version (quelque peu) lisible, avec des commentaires détaillés:

:-[library(clpfd)].

% Shorthand for maplist, which works like map in high order function
m(G,L):-maplist(G,L).

% Creating a square matrix A which is L x L
board(L,A):-l(L,A),m(l(L),A).

% Shorthand for length, with order of parameters reversed
l(L,A):-length(A,L).

% Unification A[I] = E
x(A,I,E):-X=..[a|A],arg(I,X,E).

% Unification A[X][Y]=E
idx2(A,E,(X,Y)):-x(A,X,R),x(R,Y,E).

% Mark positions that have been shot
markshot(A,S):-m(idx2(A,\),S).

% Place all ships on the board
placeships(H,A):-m(placeship(A),H).

% Place a length S ship horizontal/vertical forward on the board
placeship(A,S):-
    l(L,A), % Get length
    X#>0,X#=<L,Y#>0,Y#=<L, % Constraint X and Y coordinates
    transpose(A,T), % Transpose to work on columns
    (placeship_h(S,(X,Y),A) ; placeship_h(S,(Y,X),T)).

% Place ship horizontal, forward at (X,Y)
placeship_h(0,_,_).
placeship_h(L,(X,Y),A):-
    idx2(A,E,(X,Y)),var(E),E=s, % Make sure position is unassigned, then mark
    L2#=L-1,Y2#=Y+1, % Do this for all blocks of the ship
    placeship_h(L2,(X,Y2),A).

% Expand the list of ships
% e.g. [2,3,1] --> [3,2,2,2,1,1]
shipexpand(S,O):-shipexpand(S,1,O).

shipexpand([],_,[]).
shipexpand([H|R],I,O):-
    I2#=I+1,shipexpand(R,I2,O2), % process the rest
    l(H,O1),O1 ins I, % duplicate current ship size H times
    append(O2,O1,O). % larger ship size goes in front

% Print the result
pboard(A):-m(prow,A).
prow(R):-m(pcell,R),print('\n').
pcell(E):-var(E)->print(@);print(E).

game(L,H,S):-
    board(L,A), % create board
    sort(S,SS), % remove duplicates
    markshot(A,SS), % mark positions that have been shot
    shipexpand(H,HH),!, % make a list of ships
    l(SC,SS),sumlist(HH,BC),L*L-SC>=BC, % check to speed-up, can be removed
    placeships(HH,A),!, % place ships
    pboard(A). % print result

Format de requête:

game(Board_Size, Ships_List, Shots_List).

Exemple de requête (utilisant l'exemple de la question):

?- game(4,[1,1,1],[(2,1),(3,2),(3,3),(4,1),(4,3),(4,4)]).
ssss
\ss@
@\\@
\@\\
true.

?- game(4,[2,2,0,1],[(2,1),(3,2),(3,3),(4,1),(4,3),(4,4)]).
ssss
\sss
s\\s
\s\\
true.

Ah, diablement me battre par quelques dizaines de personnages! Je ne sais pas si je peux compresser le mien, mais je vais continuer d'essayer ... bonne utilisation de Prolog!
Claudiu

@Claudiu: Ma solution a toujours un "tampon" de 20 caractères environ. J'ai laissé ceux qui vérifiaient le code là-bas pour des raisons de performances, mais ils peuvent être supprimés sans affecter la correction;) Je ne me soucie pas si d'autres réponses descendent en dessous de 500, cependant.
n̴̖̋h̷͉̃a̷̭̿h̸̡̅ẗ̵̨́d̷̰̀ĥ̷̳

5

Matlab - 536 caractères

Mise à jour: format de sortie beaucoup plus petit, certains espaces de boucle supprimés.

Mise à jour: Version golfée ajoutée

Mise à jour: version commentée ajoutée, version jouée au golf réduite de ~ 100 caractères

% Battleship puzzle solver.
%
% n: size of the map (ex. 4 -> 4x4)
% sh: list of shots (ex. ['A2';'C4'])
% sp: ships of each size (ex. [2,0,1] -> 2x1 and 1x3)
%
function bs(n,sh,sp)

  % sp holds a vector of ship counts, where the index of each element is
  % the size of the ship. s will hold a vector of ship sizes, with order
  % not mattering. This is easier to work with using recursion, because
  % we can remove elements with Matlab's array subselection syntax, rather
  % than decrement elements and check if they're zero.
  %
  % Tricks:
  %   Since sp never contains a -1, find(1+sp) is the same as 1:length(sp)
  %   but is three characters shorter.
  %
  s=[];
  for i=find(1+sp)
    s(end+1:end+sp(i))=i;
  end


  % m will hold the map. It will be +2 in each direction, so that later we
  % can find neighbors of edge-spaces without checking bounds. For now,
  % each element is either '0' or '1' for a space or missed shot,
  % respectively. We convert the shots as provided by the user (ex. 'A2')
  % to marks on the map.
  %
  % Tricks:
  %   It takes one shorter character to subtract 47 than 'A' to determine
  %   the indices into the map.
  %
  m=zeros(n+2);
  for h=sh'
    m(h(2)-47,h(1)-63)=1;
  end


  % Solve the puzzle. q will either be the empty array or a solution map.
  %
  q=pp(m,s);


  % If a solution was found, output it, showing the original shots and the
  % ship placement. If no solution was found, print a sad face.
  %
  % Tricks:
  %   q is 0 on failure, which is treated like 'false'. q is a matrix on
  %   success which is NOT treated like 'true', so we have to check for
  %   failure first, then handle success in the 'else' block.
  %
  %   q contains the "fake shots" that surround each placed ship (see the
  %   pl function). We don't want to output those, so we just copy the ship
  %   markings into the original map.
  %
  if ~q ':('
  else
  m(find(q==2))=2;
  num2str(m(2:n+1,2:n+1),'%d')
  end



% Depth-first search for a solution.
%
% m: map (see main code above)
% s: vector of ship sizes to place in the map
%
% Returns q: square matrix of integers, updated with all requested ship
% sizes, or 0 if no solution is possible.
%
function q = pp(m,s)

  % If we have no ships to process, we're all done recursing and the
  % current map is a valid solution. Rather than handle this in an 'else'
  % block, we can assume it's the case and overwrite q if not, saving 4
  % characters.
  %
  q=m;


  % If we have any ships to place...
  %
  % Tricks:
  %   Since we are only interested in positive values in s, we can use
  %   sum(s) in place of isempty(s), saving 4 characters.
  %
  if sum(s)

    % Try to place the first ship in the list into the map, both vertically
    % (first call to p) and vertically (second call to p). We can process
    % any ship in the list, but the first can be removed from the list
    % with the fewest characters. r will hold a cell-array of options for
    % this ship.
    %
    r=[p(m,s(1),0),p(m',s(1),1)];


    % Recurse for each option until we find a solution.
    %
    % Tricks:
    %   Start with q, our return variable, set to 0 (indicating no solution
    %   was found. On each loop we'll only bother to recurse if q is still
    %   0. This relieves the need for if/else to check whether to continue
    %   the loop, or any final q=0 if the loop exits without success.
    %
    %   Sadly, there's no way around the length(r) call. Matlab doesn't
    %   provide syntax for iterating over cell-arrays.
    %
    q=0;
    for i=1:length(r)
      if ~q q=pp(r{i},s(2:end));end
    end
  end



% Place a single ship into a map.
%
% m: map (see main code above)
% s: ship size to place
% t: if the map has been transposed prior to this call
%
% Returns r: cell-array of possible maps including this ship
%
function r=p(m,s,t)
  % Start with an empty cell-array and pre-compute the size of the map,
  % which we'll need to use a few times.
  %
  r={};
  z=size(m);


  % For each row (omitting the first and last 'buffer' rows)...
  %
  for i=2:z(2)-1

  % For each starting column in this row where enough consecutive 0s
  % appear to fit this ship...
  %
  for j=strfind(m(i,2:end-1),(1:s)*0)

    % Copy the map so we can modify it without overwriting the variable
    % for the next loop.
    %
    n=m;


    % For each location on the map that is part of this optional
    % placement...
    for l=0:s-1
      % Let's leave this is an exercise for the reader ;)
      %
      v=-1:1;
      n([(l+j)*z(1)+i,z(1),1]*[ones(1,9);kron(v,[1 1 1]);[v v v]])=1;
    end


    % Mark each location that is part of this optional placement with
    % a '2'.
    %
    n(i,1+j:j+s)=2;


    % Since our results are going into a cell-array it won't be
    % convenient for the caller to undo any transpositions they might
    % have done. If the t flag is set, transpose this map back before
    % adding it to the cell-array.
    %
    if t n=n';end
    r{end+1}=n;
  end
  end

Voici la version golfée.

function bs(n,sh,sp)
s=[];for i=find(1+sp)
s(end+1:end+sp(i))=i;end
m=zeros(n+2);for h=sh'
m(h(2)-47,h(1)-63)=1;end
q=pp(m,s);if ~q ':('
else
m(find(q==2))=2;num2str(m(2:n+1,2:n+1),'%d')
end
function q = pp(m,s)
q=m;if sum(s)
r=[p(m,s(1),0),p(m',s(1),1)];q=0;for i=1:length(r)if ~q q=pp(r{i},s(2:end));end
end
end
function r=p(m,s,t)
r={};z=size(m);for i=2:z(2)-1
for j=strfind(m(i,2:end-1),(1:s)*0)n=m;for l=0:s-1
v=-1:1;n([(l+j)*z(1)+i,z(1),1]*[ones(1,9);kron(v,[1 1 1]);[v v v]])=1;end
n(i,1+j:j+s)=2;if t n=n';end
r{end+1}=n;end
end

Voici quelques exemples.

>>bs(4,['A1';'B3'],[2,1])
1220
0000
2120
0000

>>bs(4,['A1';'B4'],[2,2])
1022
2000
0022
2100

>> bs(4,['A1';'B4';'C2'],[3,1])
1022
2010
0020
2100

>> bs(4,['A1';'B4';'C2'],[3,2])
:(

La grande ligne avec 'kron' (près du bas du code sans golf) est ma partie préférée de cela. Il écrit un '1' à tous les emplacements de la carte voisins d'une position donnée. Pouvez-vous voir comment cela fonctionne? Il utilise le produit tensoriel de Kronecker, la multiplication matricielle, et indexe la carte sous forme de tableau linéaire ...


4

Python, 464 caractères

B,L,M=input()
R=range(B)
C=B+1
M=sum(1<<int(m[1:])*C-C+ord(m[0])-65for m in M)
def P(L,H,S):
 if len(L)==0:
  for y in R:print''.join('.#!'[(S>>y*C+x&1)+2*(M>>y*C+x&1)]for x in R)
  return 1
 for s in[2**L[0]-1,sum(1<<C*j for j in range(L[0]))]:
  for i in range(C*C):
   if H&s==s and P(L[1:],H&~(s|s<<1|s>>1|s<<B|s>>B|s<<C|s>>C|s<<C+1|s>>C+1),S|s):return 1
   s*=2
 return 0
P(sum(([l+1]*k for l,k in enumerate(L)),[])[::-1],sum((2**B-1)<<B*j+j for j in R)&~M,0)

Entrée (stdin):

7, [4,1,2,0,1], ['A1','B2','C3']

Sortie:

!#####.
.!.....
##!###.
.......
###.#.#
.......
#.#....

Fonctionne avec des entiers contenant des bitmaps de différentes fonctionnalités:

M = bitmap of misses
H = bitmap of holes where ships can still go
S = bitmap of ships already placed
L = list of ship sizes not yet placed
B = dimension of board
C = bitmap row length

Si cela ne vous dérange pas, faites-vous une optimisation ou est-ce juste une force brute?
n̴̖̋h̷͉̃a̷̭̿h̸̡̅ẗ̵̨́d̷̰̀ĥ̷̳

Il y a une optimisation: celle [::-1]qui le fait d'essayer le navire le plus long en premier. Il fait aussi marche arrière dès qu'il trouve un navire qu'il ne peut pas placer.
Keith Randall

Vous pouvez utiliser un seul onglet au lieu de 2 ou 3 espaces sur les lignes 7, 8, 11 et 12, ce qui réduit le nombre d'octets à 458. Voir ici .
mbomb007

3

Python, 562 caractères, -8 avec une sortie laide, +4? pour invocation bash

I=int;R=range
import sys;a=sys.argv
S=I(a[1]);f=[[0]*(S+2)for _ in R(S+2)]
C=a[2].split()
X=[]
for i,n in enumerate(C):X=[i+1]*I(n)+X
Q=a[3].split()
for q in Q:f[I(q[1:])][ord(q[0])-64]=1
D=R(-1,2)
V=lambda r,c:(all(f[r+Q][c+W]<2for Q in D for W in D),0,0)[f[r][c]]
def F(X):
 if not X:print"\n".join(" ".join(" .@"[c]for c in r[1:-1])for r in f[1:-1])
 x=X[0];A=R(1,S+1)
 for r in A:
    for c in A:
     for h in(0,1):
        def P(m):
         for i in R(x):f[(r+i,r)[h]][(c,c+i)[h]]=m
        if(r+x,c+x)[h]<S+2and all(V((r+i,r)[h],(c,c+i)[h])for i in R(x)):P(2);F(X[1:]);P(0)
F(X)

Remarque: les niveaux de retrait sont espace, tabulation, tabulation + espace, tabulation + tabulation, tabulation + tabulation + espace. Cela évite que quelques caractères utilisent uniquement des espaces.

Utilisation et exemple :

Prend les entrées des arguments de la ligne de commande. Génère un blanc sous forme d'espace, un plan en tant que .et en tant @que partie d'un navire:

$ python bships_golf.py "7" "4 0 2 0 1" \
         "A1 C3 B5 E4 G6 G7 A3 A4 A5 A6 C1 C3 C5 C7 B6 B7 D1 D2 G3" 2>X
. @ . . @ @ @
  @   .
. @ . @   @ .
.     @ .
. . . @   @
. .   @     .
@ . . @   @ .

Si insoluble, n'imprime rien:

$ python bships_golf.py "3" "2" "A1 A3 B1 C1 C3" 2>X
. . .
@   @
.   .
$ python bships_golf.py "3" "2" "A1 A2 A3 B1 C1 C3" 2>X
$

Le 2>Xest de supprimer un message d'erreur puisque le programme se termine en lançant une exception. N'hésitez pas à ajouter une pénalité de +4 si cela est jugé juste. Sinon, je devrais faire un try: ... except:0pour le supprimer, ce qui prendrait de toute façon plus de caractères.

Je peux aussi imprimer la sortie sous forme de nombres ( 0, 1et 2) de se raser 8 caractères, mais l' esthétique I de valeur.

Explication :

Je représente le tableau sous forme de liste de listes d'entiers de taille 2 supérieure à l'entrée, pour éviter d'avoir à vérifier les limites. 0représente un espace vide, 1un coup de feu et 2un navire. Je parcours la liste des coups Qet marque tous les coups. Je convertis la liste des navires en une liste explicite Xdes navires, par exemple, [4, 0, 2, 0, 1]devient [5, 3, 3, 1, 1, 1, 1]. Ensuite, il s’agit d’un simple algorithme de retour en arrière: par ordre de taille décroissant, essayez de placer un navire, puis le reste des navires. Si cela ne fonctionne pas, essayez le prochain emplacement. Dès qu’elle réussit, la liste de navires Xest nulle et l’accès X[0]lève une exception qui quitte le programme. Le reste n'est que du golf lourd (initialement 1615 caractères).


2

Perl, 455 447 437 436 422 418

$n=($N=<>+0)+1;@S=map{(++$-)x$_}<>=~/\d+/g;$_=<>;$f=('~'x$N.$/)x$N;substr($f,$n*$1-$n-65+ord$&,1)=x while/\w(\d+)/g;sub f{for my$i(0..$N*$n-1){for(0..@_-2){my($f,@b)=@_;$m=($s=splice@b,$_,1)-1;pos=pos($u=$_=$f)=$i;for(s/\G(~.{$N}){$m}~/$&&("\0"."\377"x$N)x$s|(o."\0"x$N)x$m.o/se?$_:(),$u=~s/\G~{$s}/o x$s/se?$u:()){for$k(0,$N-1..$n){s/(?<=o.{$k})~|~(?=.{$k}o)/!/sg}return$:if$:=@b?f($_,@b):$_}}}}$_=f$f,@S;y/!/~/;print

Dentelé:

$n=($N=<>+0)+1;
@S=map{(++$-)x$_}<>=~/\d+/g;
$_=<>;
$f=('~'x$N.$/)x$N;
substr($f,$n*$1-$n-65+ord$&,1)=x while/\w(\d+)/g;
sub f{
    for my$i(0..$N*$n-1){
        for(0..@_-2){
            my($f,@b)=@_;
            $m=($s=splice@b,$_,1)-1;
            pos=pos($u=$_=$f)=$i;
            for(s/\G(~.{$N}){$m}~/
              $&&("\0"."\377"x$N)x$s|(o."\0"x$N)x$m.o/se?$_:(),
              $u=~s/\G~{$s}/o x$s/se?$u:()){
                for$k(0,$N-1..$n){
                    s/(?<=o.{$k})~|~(?=.{$k}o)/!/sg
                }
                return$:if$:=@b?f($_,@b):$_
            }
        }
    }
}
$_=f$f,@S;
y/!/~/;
print

Je pense que cela peut être joué plus loin (par exemple avec eval<>une entrée pré-formatée, car je vois que tout va bien (?)), Ainsi que quelques autres choses (50 $sigils? Non, ils resteront).

La vitesse, comme je l’ai dit plus tôt, peut être un problème (d’instantané (voir exemple ci-dessous) à très très long), en fonction de l’emplacement de la solution sur l’arbre de récurrence, mais qu’il s’agisse de la vétusté du matériel utilisé. Je ferai la version optimisée plus tard, avec la récursivité et 2-3 autres astuces évidentes.

Il fonctionne comme ceci, 3 lignes étant alimentées par STDIN:

$ perl bf.pl
7
4 1 2 0 1
A1 B2 C3
xo~o~o~
~x~~~~~
o~xo~o~
~~~o~o~
o~~~~o~
o~~~~~~
o~ooooo

~est l'océan (solution artistique, n'est-ce pas), oet xs sont des navires et des tirs. Les 5 premières lignes reçoivent les informations et préparent notre «champ de bataille». $Nest la taille, @Sest un tableau déroulé de vaisseaux (par exemple, 1 1 1 1 2 3 3 5comme ci-dessus) , et passe à l’itération suivante. Etc.$f est une chaîne représentant le champ de bataille (lignes avec des nouvelles lignes concaténées). Vient ensuite le sous-programme récursif, qui attend l'état actuel du champ de bataille et la liste des navires restants. Il vérifie de gauche à droite, de haut en bas et tente de placer chaque navire dans chaque position, à la fois horizontalement et verticalement (voir? Il faut optimiser, mais ce sera plus tard). Un navire horizontal est un remplacement évident des expressions rationnelles, un peu plus délicat à la verticale - une manipulation de chaîne de bits à remplacer dans "colonne". En cas de succès (H, V ou les deux), les nouvelles positions inaccessibles sont signalées par!

Edit: OK, voici la version de 594 octets (sans retrait) qui essaie réellement d’être utile (rapide) - optimisée au mieux de mes capacités tout en implémentant les mêmes techniques - récursivité (bien que effectuée manuellement) et expressions rationnelles. Il maintient une "pile" -@A - tableau d'états intéressant à explorer. Un «état» correspond à 4 variables: chaîne de champ de bataille actuelle, index à partir duquel commencer à essayer de placer les navires, référence à la liste des navires restants et index du prochain navire à essayer. Au départ, il y a un seul "état" - début de chaîne vide, tous les navires. Lors du match (H ou V, voir ci-dessus), l'état actuel est poussé pour enquêter plus tard, l'état mis à jour (avec un navire placé et les positions inaccessibles marquées) est poussé et le blocage est redémarré. Lorsque la fin de la chaîne du champ de bataille est atteinte sans succès, le prochain état disponible depuis @Aest étudié (le cas échéant).

D'autres optimisations sont les suivantes: ne pas redémarrer dès le début de la chaîne, essayer de placer les grands navires en premier, ne pas vérifier les navires de même taille si le précédent a échoué à la même position, + peut-être quelque chose d'autre (comme aucune $&variable, etc.).

$N=<>+0;
$S=[reverse map{(++$-)x$_}<>=~/\d+/g];
$_=<>;
$f=('~'x$N.$/)x$N;
substr($f,$N*$2-$N+$2-66+ord$1,1)=x while/(\w)(\d+)/g;
push@A,$f,0,$S,0;
O:{
    ($f,$i,$S,$m)=splice@A,-4;
    last if!@$S;
    F:{ 
        for$j($m..$#$S){
            next if$j and$$S[$j]==$$S[$j-1];
            $s=$$S[$j];
            my@m;
            $_=$f;
            $n=$s-1;
            pos=$i;
            push@m,$_ if s/\G(?:~.{$N}){$n}~/
                ${^MATCH}&("\0"."\377"x$N)x$s|(o."\0"x$N)x$n.o/pse;
            $_=$f;
            pos=$i;
            push@m,$_ if s/\G~{$s}/o x$s/se;
            if(@m){
                push@A,$f,$i,$S,$j+1;
                my@b=@$S;
                splice@b,$j,1;
                for(@m){
                    for$k(0,$N-1..$N+1){
                        s/(?<=o.{$k})~|~(?=.{$k}o)/!/gs
                    }
                    push@A,$_,$i+1,\@b,0
                }
                redo O
            }
        }
        redo if++$i-length$f
    }
    redo if@A
}
print@$S?'':$f=~y/!/~/r

.

perl bf+.pl
10
5 4 3 2 1
A1 B2 C3 A10 B9 C10 J1 I2 H3 I9 J10 A5 C5 E5 F6 G7
xooooo~oox
~x~~~~~~x~
ooxooooxo~
~~~~~~~~o~
xoxoxoo~o~
~o~o~x~~o~
~o~o~ox~~~
~~~~~o~ooo
oxo~~~~~x~
x~x~o~o~ox

OTOH, cela prend toujours une éternité pour un cas impossible 6 5 4 3 2 1dans l'exemple ci-dessus. Peut-être que la version pratique devrait sortir immédiatement si le tonnage total des navires dépasse la capacité du champ de bataille.


2

Solution C #

  public static class ShipSolution {
    private static int[][] cloneField(int[][] field) {

      int[][] place = new int[field.Length][];

      for (int i = 0; i < field.Length; ++i) {
        place[i] = new int[field.Length];

        for (int j = 0; j < field.Length; ++j)
          place[i][j] = field[i][j];
      }

      return place;

    }

    private static void copyField(int[][] source, int[][] target) {
      for (int i = 0; i < source.Length; ++i)
        for (int j = 0; j < source.Length; ++j)
          target[i][j] = source[i][j];
    }

    // Check if placement a legal one
    private static Boolean isPlacement(int[][] field, int x, int y, int length, Boolean isHorizontal) {
      if (x < 0)
        return false;
      else if (y < 0)
        return false;
      else if (x >= field.Length)
        return false;
      else if (y >= field.Length)
        return false;

      if (isHorizontal) {
        if ((x + length - 1) >= field.Length)
          return false;

        for (int i = 0; i < length; ++i)
          if (field[x + i][y] != 0)
            return false;
      }
      else {
        if ((y + length - 1) >= field.Length)
          return false;

        for (int i = 0; i < length; ++i)
          if (field[x][y + i] != 0)
            return false;
      }

      return true;
    }

    //  When ship (legally) placed it should be marked at the field
    //  2 - ship itself
    //  3 - blocked area where no other ship could be placed
    private static void markPlacement(int[][] field, int x, int y, int length, Boolean isHorizontal) {
      if (isHorizontal) {
        for (int i = 0; i < length; ++i)
          field[x + i][y] = 2;

        for (int i = x - 1; i < x + length + 1; ++i) {
          if ((i < 0) || (i >= field.Length))
            continue;

          for (int j = y - 1; j <= y + 1; ++j)
            if ((j >= 0) && (j < field.Length))
              if (field[i][j] == 0)
                field[i][j] = 3;
        }
      }
      else {
        for (int i = 0; i < length; ++i)
          field[x][y + i] = 2;

        for (int i = x - 1; i <= x + 1; ++i) {
          if ((i < 0) || (i >= field.Length))
            continue;

          for (int j = y - 1; j < y + length + 1; ++j)
            if ((j >= 0) && (j < field.Length))
              if (field[i][j] == 0)
                field[i][j] = 3;
        }
      }
    }

    // Ship placement itteration
    private static Boolean placeShips(int[][] field, int[] ships) {
      int[] vessels = new int[ships.Length];

      for (int i = 0; i < ships.Length; ++i)
        vessels[i] = ships[i];

      for (int i = ships.Length - 1; i >= 0; --i) {
        if (ships[i] <= 0)
          continue;

        int length = i + 1;

        vessels[i] = vessels[i] - 1;

        // Possible placements
        for (int x = 0; x < field.Length; ++x)
          for (int y = 0; y < field.Length; ++y) {
            if (isPlacement(field, x, y, length, true)) {
              int[][] newField = cloneField(field);

              // Mark
              markPlacement(newField, x, y, length, true);

              if (placeShips(newField, vessels)) {
                copyField(newField, field);

                return true;
              }
            }

            if (length > 1)
              if (isPlacement(field, x, y, length, false)) {
                int[][] newField = cloneField(field);

                // Mark
                markPlacement(newField, x, y, length, false);

                if (placeShips(newField, vessels)) {
                  copyField(newField, field);

                  return true;
                }
              }
          }

        return false; // <- the ship can't be placed legally
      }

      return true; //    <- there're no more ships to be placed
    }

    /// <summary>
    /// Solve ship puzzle
    /// </summary>
    /// <param name="size">size of the board</param>
    /// <param name="ships">ships to be placed</param>
    /// <param name="misses">misses in (line, column) format; both line and column are zero-based</param>
    /// <returns>Empty string if there is no solution; otherwise possible ship placement where
    ///   . - Blank place
    ///   * - "miss"
    ///   X - Ship
    /// </returns>
    public static String Solve(int size, int[] ships, String[] misses) {
      int[][] field = new int[size][];

      for (int i = 0; i < size; ++i)
        field[i] = new int[size];

      if (!Object.ReferenceEquals(null, misses))
        foreach (String item in misses) {
          String miss = item.Trim().ToUpperInvariant();

          int x = int.Parse(miss.Substring(1)) - 1;
          int y = miss[0] - 'A';

          field[x][y] = 1;
        }

      if (!placeShips(field, ships))
        return "";

      StringBuilder Sb = new StringBuilder();

      foreach (int[] line in field) {
        if (Sb.Length > 0)
          Sb.AppendLine();

        foreach (int item in line) {
          if (item == 1)
            Sb.Append('*');
          else if (item == 2)
            Sb.Append('X');
          else
            Sb.Append('.');
        }
      }

      return Sb.ToString();
    }
  }

  ...

  int size = 4;
  int[] ships = new int[] { 1, 1, 1 };
  String[] misses = new String[] {"C1", "C2", "B2", "A3", "A1", "B3", "D1"};

  // *X**
  // .**X
  // **.X
  // XX.X
  Console.Out.Write(ShipSolution.Solve(size, ships, misses));

Bien qu’il s’agisse d’une solution rapide et efficace, elle ne semble pas gérer correctement les tâches insolubles. Par exemple, size=1 ships={1} moves={"A1"}.
Mniip

Je suis désolé, j'ai raté la situation lorsque le prochain navire ne peut être placé légalement. J'ai édité la solution.
Dmitry Bychenko

6
Parce que la question est un code-golf , essayez de garder le nombre de caractères le plus bas possible (en supprimant les espaces, par exemple) et incluez le nombre de caractères dans votre code.
ProgramFOX

Le nombre de caractères actuel est de 5399.
intx13

1

Java, 1178

Ouais beaucoup trop longtemps.

import java.util.*;class S{public static void main(String[]a){new S();}int a;int[][]f;List<L>l;Stack<Integer>b;S(){Scanner s=new Scanner(System.in);a=s.nextInt();f=new int[a][a];for(int[]x:f)Arrays.fill(x,95);s.next(";");b=new Stack();for(int i=1;s.hasNextInt();i++){b.addAll(Collections.nCopies(s.nextInt(),i));}s.next(";");while(s.findInLine("([A-Z])")!=null)f[s.match().group(1).charAt(0)-65][s.nextInt()-1]=79;l=new ArrayList();for(int i=0;i<a;i++){l.add(new L(i){int g(int c){return g(c,i);}void s(int c,int v){f[c][i]=v;}});l.add(new L(i){int g(int r){return g(i,r);}void s(int r,int v){f[i][r]=v;}});}if(s()){String o="";for(int r=0;r<a;r++){for(int c=0;c<a;c++)o+=(char)f[c][r];o+='\n';}System.out.print(o);}}boolean s(){if(b.empty())return true;int s=b.pop();Integer n=95;for(L c:l){int f=0;for(int x=0;x<a;x++){if(n.equals(c.g(x)))f++;else f=0;if(f>=s){for(int i=0;i<s;i++)c.s(x-i,35);if(s())return true;for(int i=0;i<s;i++)c.s(x-i,n);}}}b.push(s);return false;}class L{int i;L(int v){i=v;}void s(int i,int v){}int g(int i){return 0;}int g(int c,int r){int v=0;for(int x=-1;x<2;x++)for(int y=-1;y<2;y++)try{v|=f[c+x][r+y];}catch(Exception e){}return v&(f[c][r]|32);}}}

Ungolfed:

import java.util.*;

class S {
    public static void main(String[] a) {
        new S();
    }

    /**
     * Number of rows/columns
     */
    int a;

    /**
     * A reference to the full field
     */
    int[][] f;

    /**
     * List of Ls representing all columns/rows
     */
    List<L> l;

    /**
     * Stack of all unplaced ships, represented by their length as Integer
     */
    Stack<Integer> b;

    S() {
        // Read input from STDIN:
        Scanner s = new Scanner(System.in);
        a = s.nextInt();
        f = new int[a][a];
        // initialize field to all '_'
        for(int[] x: f)
            Arrays.fill(x, 95);
        // ; as separator
        s.next(";");
        b = new Stack();
        // Several int to represent ships
        for (int i = 1; s.hasNextInt(); i++) {
            // nCopies for easier handling (empty Stack => everything placed)
            b.addAll(Collections.nCopies(s.nextInt(), i));
        }
        // ; as separator
        s.next(";");
        // find an uppercase letter on this line
        while (s.findInLine("([A-Z])") != null) {
            // s.match.group(1) contains the matched letter
            // s.nextInt() to get the number following the letter
            f[s.match().group(1).charAt(0) - 65][s.nextInt() - 1] = 79;
        }
        // Loop is left when line ends or no uppercase letter is following the current position

        // Now create a List of Lists representing single columns and rows of our field
        l = new ArrayList();
        for (int i = 0; i < a; i++) {
            l.add(new L(i) {
                int g(int c) {
                    return g(c, i);
                }

                void s(int c, int v) {
                    f[c][i] = v;
                }
            });
            l.add(new L(i) {
                int g(int r) {
                    return g(i, r);
                }

                void s(int r, int v) {
                    f[i][r] = v;
                }
            });
        }
        // try to place all ships
        if (s()) {
            // print solution
            String o = "";
            for (int r = 0; r < a; r++) {
                for (int c = 0; c < a; c++) {
                    o += (char) f[c][r];
                }
                o += '\n';
            }
            System.out.print(o);
        }
    }

    /**
     * Try to place all ships
     *
     * @return {@code true}, if a solution is found
     */
    boolean s() {
        if (b.empty()) {
            // no more ships
            return true;
        }
        // take a ship from the stack
        int s = b.pop();
        // 95 is the Ascii-code of _
        Integer n = 95;
        // go over all columns and rows
        for (L c : l) {
            // f counts the number of consecutive free fields
            int f = 0;
            // move through this column/row
            for (int x = 0; x < a; x++) {
                // Is current field free?
                if (n.equals(c.g(x))) {
                    f++;
                } else {
                    f = 0;
                }
                // Did we encounter enough free fields to place our ship?
                if (f >= s) {
                    // enter ship
                    for (int i = 0; i < s; i++) {
                        c.s(x - i, 35);
                    }
                    // try to place remaining ships
                    if (s()) {
                        return true;
                    }
                    // placing remaining ships has failed ; remove ship
                    for (int i = 0; i < s; i++) {
                        c.s(x - i, n);
                    }
                }
            }
        }
        // we have found no place for our ship so lets push it back
        b.push(s);
        return false;
    }

    /**
     * List representing a single row or column of the field.
     * "Abstract"
     */
    class L {
        /**
         * Index of row/column. Stored here as loop-variables can not be final. Used only {@link #g(int)} and {@link #s(int, int)}
         */
        int i;

        L(int v) {
            i = v;
        }

        /**
         * Set char representing the state at the i-th position in this row/column.
         * "Abstract"
         */
        void s(int i, int v) {
        }

        /**
         * Get char representing the state at the i-th position in this row/column.
         * "Abstract"
         *
         * @return {@code '_'} if this and all adjacent field contain no {@code '#'}
         */
        int g(int i) {
            return 0;
        }

        /**
         * Get char representing the state at the position in c-th column and r-th row
         *
         * @return {@code '_'} if this and all adjacent field contain no {@code '#'}
         */
        int g(int c, int r) {
            // v stores the result
            int v = 0;
            // or all adjacent fields
            for (int x = -1; x < 2; x++) {
                for (int y = -1; y < 2; y++) {
                    // ungolfed we should use something like
                    // v |= 0 > c + x || 0 > r + y || c + x >= a || r + y >= a ? 0 : f[c + x][r + y];
                    // but his will do (and is shorter)
                    try {
                        v |= f[c + x][r + y];
                    } catch (Exception e) {
                    }
                }
            }
            // we use '_' (95), 'O' (79), '#' (35). Only 35 contains the 32-bit
            // So we only need the 32-bit of the or-ed-value + the bits of the value directly in this field
            return v & (f[c][r] | 32);
        }

    }
}

Sample-Input

6 ; 3 2 1 ; A1 A3 B2 C3 D4 E5 F6 B6 E3 D3 F4

Exemple de sortie

O###_#
_O____
O_OOO#
#_#O_O
#_#_O#
_O___O

Avec

  • O tir manqué
  • # partie de navire
  • _ tirez ici ensuite ;-)

Voir sur ideone.com

Le traitement des entrées attend les espaces autour des nombres / ;et ne fonctionnera pas autrement.

Je place les grands navires en premier car ils ont moins d'endroits où aller. Si vous voulez passer à petits d' abord , vous pouvez remplacer pop()par remove(0)et push(s)par add(0,s)même que le remplacement de l' un des deux devrait encore donner lieu à un programme valide.

Si vous autorisez les navires à se toucher, la g(int,int)fonction peut être grandement simplifiée ou supprimée.

En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.