Je forme un auto-encoderréseau avec Adamoptimiseur (avec amsgrad=True) et MSE losspour la tâche de séparation de source audio à canal unique. Chaque fois que je diminue le taux d'apprentissage d'un facteur, la perte de réseau saute brusquement puis diminue jusqu'à la prochaine décroissance du taux d'apprentissage.
J'utilise Pytorch pour la mise en œuvre du réseau et la formation.
Following are my experimental setups:
 Setup-1: NO learning rate decay, and 
          Using the same Adam optimizer for all epochs
 Setup-2: NO learning rate decay, and 
          Creating a new Adam optimizer with same initial values every epoch
 Setup-3: 0.25 decay in learning rate every 25 epochs, and
          Creating a new Adam optimizer every epoch
 Setup-4: 0.25 decay in learning rate every 25 epochs, and
          NOT creating a new Adam optimizer every time rather
          using PyTorch's "multiStepLR" and "ExponentialLR" decay scheduler 
          every 25 epochs
J'obtiens des résultats très surprenants pour les configurations n ° 2, n ° 3, n ° 4 et je ne peux pas en expliquer l'explication. Voici mes résultats:
Setup-1 Results:
Here I'm NOT decaying the learning rate and 
I'm using the same Adam optimizer. So my results are as expected.
My loss decreases with more epochs.
Below is the loss plot this setup.
Tracé-1:
optimizer = torch.optim.Adam(lr=m_lr,amsgrad=True, ...........)
for epoch in range(num_epochs):
    running_loss = 0.0
    for i in range(num_train):
        train_input_tensor = ..........                    
        train_label_tensor = ..........
        optimizer.zero_grad()
        pred_label_tensor = model(train_input_tensor)
        loss = criterion(pred_label_tensor, train_label_tensor)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
    loss_history[m_lr].append(running_loss/num_train)
Setup-2 Results:  
Here I'm NOT decaying the learning rate but every epoch I'm creating a new
Adam optimizer with the same initial parameters.
Here also results show similar behavior as Setup-1.
Because at every epoch a new Adam optimizer is created, so the calculated gradients
for each parameter should be lost, but it seems that this doesnot affect the 
network learning. Can anyone please help on this?
Terrain-2:
for epoch in range(num_epochs):
    optimizer = torch.optim.Adam(lr=m_lr,amsgrad=True, ...........)
    running_loss = 0.0
    for i in range(num_train):
        train_input_tensor = ..........                    
        train_label_tensor = ..........
        optimizer.zero_grad()
        pred_label_tensor = model(train_input_tensor)
        loss = criterion(pred_label_tensor, train_label_tensor)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
    loss_history[m_lr].append(running_loss/num_train)
Setup-3 Results: 
As can be seen from the results in below plot, 
my loss jumps every time I decay the learning rate. This is a weird behavior.
If it was happening due to the fact that I'm creating a new Adam 
optimizer every epoch then, it should have happened in Setup #1, #2 as well.
And if it is happening due to the creation of a new Adam optimizer with a new 
learning rate (alpha) every 25 epochs, then the results of Setup #4 below also 
denies such correlation.
Tracé-3:
decay_rate = 0.25
for epoch in range(num_epochs):
    optimizer = torch.optim.Adam(lr=m_lr,amsgrad=True, ...........)
    if epoch % 25 == 0  and epoch != 0:
        lr *= decay_rate   # decay the learning rate
    running_loss = 0.0
    for i in range(num_train):
        train_input_tensor = ..........                    
        train_label_tensor = ..........
        optimizer.zero_grad()
        pred_label_tensor = model(train_input_tensor)
        loss = criterion(pred_label_tensor, train_label_tensor)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
    loss_history[m_lr].append(running_loss/num_train)
Setup-4 Results:  
In this setup, I'm using Pytorch's learning-rate-decay scheduler (multiStepLR)
which decays the learning rate every 25 epochs by 0.25.
Here also, the loss jumps everytime the learning rate is decayed.
Comme suggéré par @Dennis dans les commentaires ci-dessous, j'ai essayé avec les deux ReLUet les 1e-02 leakyReLUnon - linéarités. Mais, les résultats semblent se comporter de manière similaire et la perte diminue d'abord, puis augmente puis sature à une valeur supérieure à ce que j'obtiendrais sans décroissance du taux d'apprentissage.
Le graphique 4 montre les résultats.
Tracé-4:
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer=optimizer, milestones=[25,50,75], gamma=0.25)
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer=optimizer, gamma=0.95)
scheduler = ......... # defined above
optimizer = torch.optim.Adam(lr=m_lr,amsgrad=True, ...........)
for epoch in range(num_epochs):
    scheduler.step()
    running_loss = 0.0
    for i in range(num_train):
        train_input_tensor = ..........                    
        train_label_tensor = ..........
        optimizer.zero_grad()
        pred_label_tensor = model(train_input_tensor)
        loss = criterion(pred_label_tensor, train_label_tensor)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
    loss_history[m_lr].append(running_loss/num_train)
MODIFICATIONS:
- Comme suggéré dans les commentaires et la réponse ci-dessous, j'ai apporté des modifications à mon code et formé le modèle. J'ai ajouté le code et les tracés pour le même.
- J'ai essayé avec divers lr_schedulerdansPyTorch (multiStepLR, ExponentialLR)et les parcelles pour les mêmes sont répertoriées dansSetup-4comme suggéré par @Dennis dans les commentaires ci-dessous.
- Essayer avec leakyReLU comme suggéré par @Dennis dans les commentaires.
De l'aide. Merci



